Source code for sympy.core.exprtools

"""Tools for manipulating of large commutative expressions. """

from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.basic import Basic
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.coreerrors import NonCommutativeExpression
from sympy.core.containers import Tuple

def decompose_power(expr):
    """
    Decompose power into symbolic base and integer exponent.

    **Example**

    >>> from sympy.core.exprtools import decompose_power
    >>> from sympy.abc import x, y

    >>> decompose_power(x)
    (x, 1)
    >>> decompose_power(x**2)
    (x, 2)
    >>> decompose_power(x**(2*y))
    (x**y, 2)
    >>> decompose_power(x**(2*y/3))
    (x**(y/3), 2)

    """
    base, exp = expr.as_base_exp()

    if exp.is_Number:
        if exp.is_Rational:
            if not exp.is_Integer:
                base = Pow(base, Rational(1, exp.q))

            exp = exp.p
        else:
            base, exp = expr, 1
    else:
        exp, tail = exp.as_coeff_mul()

        if exp.is_Rational:
            if not exp.is_Integer:
                tail += (Rational(1, exp.q),)

            base, exp = Pow(base, Mul(*tail)), exp.p
        else:
            base, exp = expr, 1

    return base, exp

class Factors(object):
    """Efficient representation of ``f_1*f_2*...*f_n``. """

    __slots__ = ['factors', 'gens']

    def __init__(self, factors=None):
        if factors is None:
            factors = {}

        self.factors = factors
        self.gens = frozenset(factors.keys())

    def __hash__(self):
        return hash((tuple(self.factors), self.gens))

    def __repr__(self):
        return "Factors(%s)" % self.factors

    def as_expr(self):
        return Mul(*[ factor**exp for factor, exp in self.factors.iteritems() ])

    def normal(self, other):
        self_factors = dict(self.factors)
        other_factors = dict(other.factors)

        for factor, self_exp in self.factors.iteritems():
            try:
                other_exp = other.factors[factor]
            except KeyError:
                continue

            exp = self_exp - other_exp

            if not exp:
                del self_factors[factor]
                del other_factors[factor]
            else:
                if exp > 0:
                    self_factors[factor] = exp
                    del other_factors[factor]
                else:
                    del self_factors[factor]
                    other_factors[factor] = -exp

        return Factors(self_factors), Factors(other_factors)

    def mul(self, other):
        factors = dict(self.factors)

        for factor, exp in other.factors.iteritems():
            if factor in factors:
                exp = factors[factor] + exp

                if not exp:
                    del factors[factor]
                    continue

            factors[factor] = exp

        return Factors(factors)

    def div(self, other):
        quo, rem = dict(self.factors), {}

        for factor, exp in other.factors.iteritems():
            if factor in quo:
                exp = quo[factor] - exp

                if exp <= 0:
                    del quo[factor]

                if exp >= 0:
                    if exp:
                        quo[factor] = exp

                    continue

                exp = -exp

            rem[factor] = exp

        return Factors(quo), Factors(rem)

    def quo(self, other):
        return self.div(other)[0]

    def rem(self, other):
        return self.div(other)[1]

    def pow(self, other):
        if type(other) is int and other >= 0:
            factors = {}

            if other:
                for factor, exp in self.factors.iteritems():
                    factors[factor] = exp*other

            return Factors(factors)
        else:
            raise ValueError("expected non-negative integer, got %s" % other)

    def gcd(self, other):
        factors = {}

        for factor, exp in self.factors.iteritems():
            if factor in other.factors:
                exp = min(exp, other.factors[factor])
                factors[factor] = exp

        return Factors(factors)

    def lcm(self, other):
        factors = dict(self.factors)

        for factor, exp in other.factors.iteritems():
            if factor in factors:
                exp = max(exp, factors[factor])

            factors[factor] = exp

        return Factors(factors)

    def __mul__(self, other):
        if isinstance(other, Factors):
            return self.mul(other)
        else:
            return NotImplemented

    def __divmod__(self, other):
        if isinstance(other, Factors):
            return self.div(other)
        else:
            return NotImplemented

    def __div__(self, other):
        if isinstance(other, Factors):
            return self.quo(other)
        else:
            return NotImplemented

    __truediv__ = __div__

    def __mod__(self, other):
        if isinstance(other, Factors):
            return self.rem(other)
        else:
            return NotImplemented

    def __pow__(self, other):
        if type(other) is int:
            return self.pow(other)
        else:
            return NotImplemented

    def __eq__(self, other):
        return self.factors == other.factors

    def __ne__(self, other):
        return not self.__eq__(other)

class Term(object):
    """Efficient representation of ``coeff*(numer/denom)``. """

    __slots__ = ['coeff', 'numer', 'denom']

    def __init__(self, term, numer=None, denom=None):
        if numer is None and denom is None:
            if not term.is_commutative:
                raise NonCommutativeExpression('commutative expression expected')

            coeff, factors = term.as_coeff_mul()
            numer, denom = {}, {}

            for factor in factors:
                base, exp = decompose_power(factor)

                if base.is_Add:
                    cont, base = base.primitive()
                    coeff *= cont**exp

                if exp > 0:
                    numer[base] = exp
                else:
                    denom[base] = -exp

            numer = Factors(numer)
            denom = Factors(denom)
        else:
            coeff = term

            if numer is None:
                numer = Factors()

            if denom is None:
                denom = Factors()

        self.coeff = coeff
        self.numer = numer
        self.denom = denom

    def __hash__(self):
        return hash((self.coeff, self.numer, self.denom))

    def __repr__(self):
        return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)

    def as_expr(self):
        return self.coeff*(self.numer.as_expr()/self.denom.as_expr())

    def mul(self, other):
        coeff = self.coeff*other.coeff
        numer = self.numer.mul(other.numer)
        denom = self.denom.mul(other.denom)

        numer, denom = numer.normal(denom)

        return Term(coeff, numer, denom)

    def inv(self):
        return Term(1/self.coeff, self.denom, self.numer)

    def quo(self, other):
        return self.mul(other.inv())

    def pow(self, other):
        if other < 0:
            return self.inv().pow(-other)
        else:
            return Term(self.coeff **  other,
                        self.numer.pow(other),
                        self.denom.pow(other))

    def gcd(self, other):
        return Term(self.coeff.gcd(other.coeff),
                    self.numer.gcd(other.numer),
                    self.denom.gcd(other.denom))

    def lcm(self, other):
        return Term(self.coeff.lcm(other.coeff),
                    self.numer.lcm(other.numer),
                    self.denom.lcm(other.denom))

    def __mul__(self, other):
        if isinstance(other, Term):
            return self.mul(other)
        else:
            return NotImplemented

    def __div__(self, other):
        if isinstance(other, Term):
            return self.quo(other)
        else:
            return NotImplemented

    __truediv__ = __div__

    def __pow__(self, other):
        if type(other) is int:
            return self.pow(other)
        else:
            return NotImplemented

    def __eq__(self, other):
        return (self.coeff == other.coeff and
                self.numer == other.numer and
                self.denom == other.denom)

    def __ne__(self, other):
        return not self.__eq__(other)

def _gcd_terms(terms):
    """Helper function for :func:`gcd_terms`. """
    if isinstance(terms, Basic) and not isinstance(terms, Tuple):
        terms = Add.make_args(terms)

    if len(terms) <= 1:
        if not terms:
            return S.Zero, S.Zero, S.One
        else:
            return terms[0], S.One, S.One

    terms = map(Term, terms)
    cont = terms[0]

    for term in terms[1:]:
        cont = cont.gcd(term)

    for i, term in enumerate(terms):
        terms[i] = term.quo(cont)

    denom = terms[0].denom

    for term in terms[1:]:
        denom = denom.lcm(term.denom)

    numers = []

    for term in terms:
        numer = term.numer.mul(denom.quo(term.denom))
        numers.append(term.coeff*numer.as_expr())

    cont = cont.as_expr()
    numer = Add(*numers)
    denom = denom.as_expr()

    if numer.is_Add:
        _cont, numer = numer.primitive()
        cont *= _cont

    return cont, numer, denom

[docs]def gcd_terms(terms): """ Compute the GCD of ``terms`` and put them together. **Example** >>> from sympy.core import gcd_terms >>> from sympy.abc import x, y >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2) y*(x + 1)*(x + y + 1) """ from sympy.polys.polytools import _keep_coeff cont, numer, denom = _gcd_terms(sympify(terms)) coeff, factors = cont.as_coeff_Mul() return _keep_coeff(coeff, factors*numer/denom)