Source code for sympy.parsing.maxima

import re
from sympy import sympify, Sum, product, sin, cos

class MaximaHelpers:
    def maxima_expand(expr):
        return expr.expand()

    def maxima_float(expr):
        return expr.evalf()

    def maxima_trigexpand(expr):
        return expr.expand(trig=True)

    def maxima_sum(a1, a2, a3, a4):
        return Sum(a1, (a2, a3, a4)).doit()

    def maxima_product(a1,a2,a3,a4):
        return product(a1, (a2,a3,a4))

    def maxima_csc(expr):
        return 1/sin(expr)

    def maxima_sec(expr):
        return 1/cos(expr)

sub_dict = {
        'pi' : re.compile('%pi'),
        'E' : re.compile('%e'),
        'I' : re.compile('%i'),
        '**': re.compile('\^'),
        'oo': re.compile(r'\binf\b'),
        '-oo': re.compile(r'\bminf\b'),
        "'-'" : re.compile(r'\bminus\b'),
        'maxima_expand' : re.compile(r'\bexpand\b'),
        'maxima_float'  : re.compile(r'\bfloat\b'),
        'maxima_trigexpand' : re.compile(r'\btrigexpand'),
        'maxima_sum' : re.compile(r'\bsum\b'),
        'maxima_product' : re.compile(r'\bproduct\b'),
        'cancel' : re.compile(r'\bratsimp\b'),
        'maxima_csc' : re.compile(r'\bcsc\b'),
        'maxima_sec' : re.compile(r'\bsec\b')
}

var_name = re.compile('^\s*(\w+)\s*:')

[docs]def parse_maxima(str, globals=None, name_dict={}): str = str.strip() str = str.rstrip('; ') for k,v in sub_dict.items(): str = v.sub(k, str) assign_var = None var_match = var_name.search(str) if var_match: assign_var = var_match.group(1) str = str[var_match.end():].strip() dct = MaximaHelpers.__dict__.copy() dct.update(name_dict) obj = sympify(str, locals= dct) if assign_var and globals: globals[assign_var] = obj return obj