This object represents a point in a dynamic system.
It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent point to this point.
Sets the acceleration of this point with the 1point theory.
The 1point theory for point acceleration looks like this:
^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP) + 2 ^N omega^B x ^B v^P
where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N.
Parameters :  otherpoint : Point
outframe : ReferenceFrame
fixedframe : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
>>> q = dynamicsymbols('q')
>>> q2 = dynamicsymbols('q2')
>>> qd = dynamicsymbols('q', 1)
>>> q2d = dynamicsymbols('q2', 1)
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.set_ang_vel(N, 5 * B.y)
>>> O = Point('O')
>>> P = O.locatenew('P', q * B.x)
>>> P.set_vel(B, qd * B.x + q2d * B.y)
>>> O.set_vel(N, 0)
>>> P.a1pt_theory(O, N, B)
(25*q + q'')*B.x + q2''*B.y  10*q'*B.z
Sets the acceleration of this point with the 2point theory.
The 2point theory for point acceleration looks like this:
^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)
where O and P are both points fixed in frame B, which is rotating in frame N.
Parameters :  otherpoint : Point
outframe : ReferenceFrame
fixedframe : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> N = ReferenceFrame('N')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> O = Point('O')
>>> P = O.locatenew('P', 10 * B.x)
>>> O.set_vel(N, 5 * N.x)
>>> P.a2pt_theory(O, N, B)
 10*q'**2*B.x + 10*q''*B.y
The acceleration Vector of this Point in a ReferenceFrame.
Parameters :  frame : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_acc(N, 10 * N.x)
>>> p1.acc(N)
10*N.x
Creates a new point with a position defined from this point.
Parameters :  name : str
value : Vector


Examples
>>> from sympy.physics.mechanics import ReferenceFrame, Point
>>> N = ReferenceFrame('N')
>>> P1 = Point('P1')
>>> P2 = P1.locatenew('P2', 10 * N.x)
Returns a Vector distance between this Point and the other Point.
Parameters :  otherpoint : Point


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p2 = Point('p2')
>>> p1.set_pos(p2, 10 * N.x)
>>> p1.pos_from(p2)
10*N.x
Used to set the acceleration of this Point in a ReferenceFrame.
Parameters :  value : Vector
frame : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_acc(N, 10 * N.x)
>>> p1.acc(N)
10*N.x
Used to set the position of this point w.r.t. another point.
Parameters :  value : Vector
point : Point


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p2 = Point('p2')
>>> p1.set_pos(p2, 10 * N.x)
>>> p1.pos_from(p2)
10*N.x
Sets the velocity Vector of this Point in a ReferenceFrame.
Parameters :  value : Vector
frame : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_vel(N, 10 * N.x)
>>> p1.vel(N)
10*N.x
Sets the velocity of this point with the 1point theory.
The 1point theory for point velocity looks like this:
^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP
where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N.
Parameters :  otherpoint : Point
outframe : ReferenceFrame
interframe : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
>>> q = dynamicsymbols('q')
>>> q2 = dynamicsymbols('q2')
>>> qd = dynamicsymbols('q', 1)
>>> q2d = dynamicsymbols('q2', 1)
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.set_ang_vel(N, 5 * B.y)
>>> O = Point('O')
>>> P = O.locatenew('P', q * B.x)
>>> P.set_vel(B, qd * B.x + q2d * B.y)
>>> O.set_vel(N, 0)
>>> P.v1pt_theory(O, N, B)
q'*B.x + q2'*B.y  5*q*B.z
Sets the velocity of this point with the 2point theory.
The 2point theory for point velocity looks like this:
^N v^P = ^N v^O + ^N omega^B x r^OP
where O and P are both points fixed in frame B, which is rotating in frame N.
Parameters :  otherpoint : Point
outframe : ReferenceFrame
fixedframe : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> N = ReferenceFrame('N')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> O = Point('O')
>>> P = O.locatenew('P', 10 * B.x)
>>> O.set_vel(N, 5 * N.x)
>>> P.v2pt_theory(O, N, B)
5*N.x + 10*q'*B.y
The velocity Vector of this Point in the ReferenceFrame.
Parameters :  frame : ReferenceFrame


Examples
>>> from sympy.physics.mechanics import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_vel(N, 10 * N.x)
>>> p1.vel(N)
10*N.x
Gives equations relating the qdot’s to u’s for a rotation type.
Supply rotation type and order as in orient. Speeds are assumed to be bodyfixed; if we are defining the orientation of B in A using by rot_type, the angular velocity of B in A is assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z
Parameters :  speeds : list of length 3
coords : list of length 3 or 4
rot_type : str
rot_order : str


Examples
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy.physics.mechanics import kinematic_equations, mprint
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> q1, q2, q3 = dynamicsymbols('q1 q2 q3')
>>> mprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'),
... order=None)
[(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2)  u3 + q3']