Source code for sympy.physics.mechanics.functions

from __future__ import print_function, division

__all__ = ['cross',
           'dot',
           'express',
           'time_derivative',
           'outer',
           'inertia',
           'mechanics_printing',
           'mprint',
           'msprint',
           'mpprint',
           'mlatex',
           'kinematic_equations',
           'inertia_of_point_mass',
           'get_motion_params',
           'partial_velocity',
           'linear_momentum',
           'angular_momentum',
           'kinetic_energy',
           'potential_energy',
           'Lagrangian']

from sympy.physics.mechanics.essential import (Vector, Dyadic, ReferenceFrame,
                                               CoordinateSym,
                                               MechanicsStrPrinter,
                                               MechanicsPrettyPrinter,
                                               MechanicsLatexPrinter,
                                               dynamicsymbols,
                                               _check_frame, _check_vector)
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.physics.mechanics.point import Point
from sympy import sympify, solve, diff, sin, cos, Matrix, Symbol, integrate, \
     trigsimp
from sympy.core.basic import S


[docs]def cross(vec1, vec2): """Cross product convenience wrapper for Vector.cross(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Cross product is between two vectors') return vec1 ^ vec2
cross.__doc__ += Vector.cross.__doc__
[docs]def dot(vec1, vec2): """Dot product convenience wrapper for Vector.dot(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Dot product is between two vectors') return vec1 & vec2
dot.__doc__ += Vector.dot.__doc__
[docs]def express(expr, frame, frame2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame. Refer to the local methods of Vector and Dyadic for details. If 'variables' is True, then the coordinate variables (CoordinateSym instances) of other frames present in the vector/scalar field or dyadic expression are also substituted in terms of the base scalars of this frame. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in ReferenceFrame 'frame' frame: ReferenceFrame The reference frame to express expr in frame2 : ReferenceFrame The other frame required for re-expression(only for Dyadic expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of frame Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, outer, dynamicsymbols >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> from sympy.physics.mechanics import express >>> express(d, B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) >>> express(B.x, N) cos(q)*N.x + sin(q)*N.y >>> express(N[0], B, variables=True) B_x*cos(q(t)) - B_y*sin(q(t)) """ _check_frame(frame) if expr == 0: return S(0) if isinstance(expr, Vector): #Given expr is a Vector if variables: #If variables attribute is True, substitute #the coordinate variables in the Vector frame_list = [x[-1] for x in expr.args] subs_dict = {} for f in frame_list: subs_dict.update(f.variable_map(frame)) expr = expr.subs(subs_dict) #Re-express in this frame outvec = Vector([]) for i, v in enumerate(expr.args): if v[1] != frame: temp = frame.dcm(v[1]) * v[0] if Vector.simp: temp = temp.applyfunc(lambda x: \ trigsimp(x, method='fu')) outvec += Vector([(temp, frame)]) else: outvec += Vector([v]) return outvec if isinstance(expr, Dyadic): if frame2 is None: frame2 = frame _check_frame(frame2) ol = Dyadic(0) for i, v in enumerate(expr.args): ol += express(v[0], frame, variables=variables) * \ (express(v[1], frame, variables=variables) | \ express(v[2], frame2, variables=variables)) return ol else: if variables: #Given expr is a scalar field frame_set = set([]) expr = sympify(expr) #Subsitute all the coordinate variables for x in expr.atoms(): if isinstance(x, CoordinateSym)and x.frame != frame: frame_set.add(x.frame) subs_dict = {} for f in frame_set: subs_dict.update(f.variable_map(frame)) return expr.subs(subs_dict) return expr
[docs]def time_derivative(expr, frame, order=1): """ Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame. References ========== http://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames Parameters ========== expr : Vector/Dyadic/sympifyable The expression whose time derivative is to be calculated frame : ReferenceFrame The reference frame to calculate the time derivative in order : integer The order of the derivative to be calculated Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, Vector, dynamicsymbols >>> from sympy import Symbol >>> q1 = Symbol('q1') >>> u1 = dynamicsymbols('u1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> v = u1 * N.x >>> A.set_ang_vel(N, 10*A.x) >>> from sympy.physics.mechanics import time_derivative >>> time_derivative(v, N) u1'*N.x >>> time_derivative(u1*A[0], N) N_x*Derivative(u1(t), t) >>> B = N.orientnew('B', 'Axis', [u1, N.z]) >>> from sympy.physics.mechanics import outer >>> d = outer(N.x, N.x) >>> time_derivative(d, B) - u1'*(N.y|N.x) - u1'*(N.x|N.y) """ t = dynamicsymbols._t _check_frame(frame) if order == 0: return expr if order%1 != 0 or order < 0: raise ValueError("Unsupported value of order entered") if isinstance(expr, Vector): outvec = Vector(0) for i, v in enumerate(expr.args): if v[1] == frame: outvec += Vector([(express(v[0], frame, \ variables=True).diff(t), frame)]) else: outvec += time_derivative(Vector([v]), v[1]) + \ (v[1].ang_vel_in(frame) ^ Vector([v])) return time_derivative(outvec, frame, order - 1) if isinstance(expr, Dyadic): ol = Dyadic(0) for i, v in enumerate(expr.args): ol += (v[0].diff(t) * (v[1] | v[2])) ol += (v[0] * (time_derivative(v[1], frame) | v[2])) ol += (v[0] * (v[1] | time_derivative(v[2], frame))) return time_derivative(ol, frame, order - 1) else: return diff(express(expr, frame, variables=True), t, order)
[docs]def outer(vec1, vec2): """Outer product convenience wrapper for Vector.outer():\n""" if not isinstance(vec1, Vector): raise TypeError('Outer product is between two Vectors') return vec1 | vec2
outer.__doc__ += Vector.outer.__doc__
[docs]def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0): """Simple way to create inertia Dyadic object. If you don't know what a Dyadic is, just treat this like the inertia tensor. Then, do the easy thing and define it in a body-fixed frame. Parameters ========== frame : ReferenceFrame The frame the inertia is defined in ixx : Sympifyable the xx element in the inertia dyadic iyy : Sympifyable the yy element in the inertia dyadic izz : Sympifyable the zz element in the inertia dyadic ixy : Sympifyable the xy element in the inertia dyadic iyz : Sympifyable the yz element in the inertia dyadic izx : Sympifyable the zx element in the inertia dyadic Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, inertia >>> N = ReferenceFrame('N') >>> inertia(N, 1, 2, 3) (N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z) """ if not isinstance(frame, ReferenceFrame): raise TypeError('Need to define the inertia in a frame') ol = sympify(ixx) * (frame.x | frame.x) ol += sympify(ixy) * (frame.x | frame.y) ol += sympify(izx) * (frame.x | frame.z) ol += sympify(ixy) * (frame.y | frame.x) ol += sympify(iyy) * (frame.y | frame.y) ol += sympify(iyz) * (frame.y | frame.z) ol += sympify(izx) * (frame.z | frame.x) ol += sympify(iyz) * (frame.z | frame.y) ol += sympify(izz) * (frame.z | frame.z) return ol
[docs]def inertia_of_point_mass(mass, pos_vec, frame): """Inertia dyadic of a point mass realtive to point O. Parameters ========== mass : Sympifyable Mass of the point mass pos_vec : Vector Position from point O to point mass frame : ReferenceFrame Reference frame to express the dyadic in Examples ======== >>> from sympy import symbols >>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass >>> N = ReferenceFrame('N') >>> r, m = symbols('r m') >>> px = r * N.x >>> inertia_of_point_mass(m, px, N) m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z) """ return mass * (((frame.x | frame.x) + (frame.y | frame.y) + (frame.z | frame.z)) * (pos_vec & pos_vec) - (pos_vec | pos_vec))
[docs]def mechanics_printing(): """Sets up interactive printing for mechanics' derivatives. The main benefit of this is for printing of time derivatives; instead of displaying as Derivative(f(t),t), it will display f' This is only actually needed for when derivatives are present and are not in a physics.mechanics object. Examples ======== >>> # 2 lines below are for tests to function properly >>> import sys >>> sys.displayhook = sys.__displayhook__ >>> from sympy import Function, Symbol, diff >>> from sympy.physics.mechanics import mechanics_printing >>> f = Function('f') >>> t = Symbol('t') >>> x = Symbol('x') >>> diff(f(t), t) Derivative(f(t), t) >>> mechanics_printing() >>> diff(f(t), t) f' >>> diff(f(x), x) Derivative(f(x), x) >>> # 2 lines below are for tests to function properly >>> import sys >>> sys.displayhook = sys.__displayhook__ """ import sys sys.displayhook = mprint
[docs]def mprint(expr, **settings): r"""Function for printing of expressions generated in mechanics. Extends SymPy's StrPrinter; mprint is equivalent to: print sstr() mprint takes the same options as sstr. Parameters ========== expr : valid sympy object SymPy expression to print settings : args Same as print for SymPy Examples ======== >>> from sympy.physics.mechanics import mprint, dynamicsymbols >>> u1 = dynamicsymbols('u1') >>> print(u1) u1(t) >>> mprint(u1) u1 """ outstr = msprint(expr, **settings) from sympy.core.compatibility import builtins if (outstr != 'None'): builtins._ = outstr print(outstr)
def msprint(expr, **settings): r"""Function for displaying expressions generated in mechanics. Returns the output of mprint() as a string. Parameters ========== expr : valid sympy object SymPy expression to print settings : args Same as print for SymPy Examples ======== >>> from sympy.physics.mechanics import msprint, dynamicsymbols >>> u1, u2 = dynamicsymbols('u1 u2') >>> u2d = dynamicsymbols('u2', level=1) >>> print("%s = %s" % (u1, u2 + u2d)) u1(t) = u2(t) + Derivative(u2(t), t) >>> print("%s = %s" % (msprint(u1), msprint(u2 + u2d))) u1 = u2 + u2' """ pr = MechanicsStrPrinter(settings) return pr.doprint(expr)
[docs]def mpprint(expr, **settings): r"""Function for pretty printing of expressions generated in mechanics. Mainly used for expressions not inside a vector; the output of running scripts and generating equations of motion. Takes the same options as SymPy's pretty_print(); see that function for more information. Parameters ========== expr : valid sympy object SymPy expression to pretty print settings : args Same as pretty print Examples ======== Use in the same way as pprint """ mp = MechanicsPrettyPrinter(settings) print(mp.doprint(expr))
[docs]def mlatex(expr, **settings): r"""Function for printing latex representation of mechanics objects. For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the same options as SymPy's latex(); see that function for more information; Parameters ========== expr : valid sympy object SymPy expression to represent in LaTeX form settings : args Same as latex() Examples ======== >>> from sympy.physics.mechanics import mlatex, ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> q1, q2 = dynamicsymbols('q1 q2') >>> q1d, q2d = dynamicsymbols('q1 q2', 1) >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2) >>> mlatex(N.x + N.y) '\\mathbf{\\hat{n}_x} + \\mathbf{\\hat{n}_y}' >>> mlatex(q1 + q2) 'q_{1} + q_{2}' >>> mlatex(q1d) '\\dot{q}_{1}' >>> mlatex(q1 * q2d) 'q_{1} \\dot{q}_{2}' >>> mlatex(q1dd * q1 / q1d) '\\frac{q_{1} \\ddot{q}_{1}}{\\dot{q}_{1}}' """ return MechanicsLatexPrinter(settings).doprint(expr)
[docs]def kinematic_equations(speeds, coords, rot_type, rot_order=''): """Gives equations relating the qdot's to u's for a rotation type. Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, the angular velocity of B in A is assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z Parameters ========== speeds : list of length 3 The body fixed angular velocity measure numbers. coords : list of length 3 or 4 The coordinates used to define the orientation of the two frames. rot_type : str The type of rotation used to create the equations. Body, Space, or Quaternion only rot_order : str If applicable, the order of a series of rotations. Examples ======== >>> from sympy.physics.mechanics import dynamicsymbols >>> from sympy.physics.mechanics import kinematic_equations, mprint >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3') >>> q1, q2, q3 = dynamicsymbols('q1 q2 q3') >>> mprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'), ... order=None) [-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3'] """ # Code below is checking and sanitizing input approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '1', '2', '3', '') rot_order = str(rot_order).upper() # Now we need to make sure XYZ = 123 rot_type = rot_type.upper() rot_order = [i.replace('X', '1') for i in rot_order] rot_order = [i.replace('Y', '2') for i in rot_order] rot_order = [i.replace('Z', '3') for i in rot_order] rot_order = ''.join(rot_order) if not isinstance(speeds, (list, tuple)): raise TypeError('Need to supply speeds in a list') if len(speeds) != 3: raise TypeError('Need to supply 3 body-fixed speeds') if not isinstance(coords, (list, tuple)): raise TypeError('Need to supply coordinates in a list') if rot_type.lower() in ['body', 'space']: if rot_order not in approved_orders: raise ValueError('Not an acceptable rotation order') if len(coords) != 3: raise ValueError('Need 3 coordinates for body or space') # Actual hard-coded kinematic differential equations q1, q2, q3 = coords q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords] w1, w2, w3 = speeds s1, s2, s3 = [sin(q1), sin(q2), sin(q3)] c1, c2, c3 = [cos(q1), cos(q2), cos(q3)] if rot_type.lower() == 'body': if rot_order == '123': return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 * c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3] if rot_order == '231': return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2] if rot_order == '312': return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 * s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2] if rot_order == '132': return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 * c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2] if rot_order == '213': return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 * s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3] if rot_order == '321': return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 * s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2] if rot_order == '121': return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 * s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2] if rot_order == '131': return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2] if rot_order == '212': return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 * s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2] if rot_order == '232': return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 * c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2] if rot_order == '313': return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 * s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3] if rot_order == '323': return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 * c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3] if rot_type.lower() == 'space': if rot_order == '123': return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2] if rot_order == '231': return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2] if rot_order == '312': return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2] if rot_order == '132': return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 * s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2] if rot_order == '213': return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2] if rot_order == '321': return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2] if rot_order == '121': return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2] if rot_order == '131': return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 * s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2] if rot_order == '212': return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2] if rot_order == '232': return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2] if rot_order == '313': return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2] if rot_order == '323': return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2] elif rot_type.lower() == 'quaternion': if rot_order != '': raise ValueError('Cannot have rotation order for quaternion') if len(coords) != 4: raise ValueError('Need 4 coordinates for quaternion') # Actual hard-coded kinematic differential equations e0, e1, e2, e3 = coords w = Matrix(speeds + [0]) E = Matrix([[e0, -e3, e2, e1], [e3, e0, -e1, e2], [-e2, e1, e0, e3], [-e1, -e2, -e3, e0]]) edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]]) return list(edots.T - 0.5 * w.T * E.T) else: raise ValueError('Not an approved rotation type for this function')
[docs]def get_motion_params(frame, **kwargs): """ Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame. If a higher order differential function is provided, the lower order functions are used as boundary conditions. For example, given the acceleration, the velocity and position parameters are taken as boundary conditions. The values of time at which the boundary conditions are specified are taken from timevalue1(for position boundary condition) and timevalue2(for velocity boundary condition). If any of the boundary conditions are not provided, they are taken to be zero by default (zero vectors, in case of vectorial inputs). If the boundary conditions are also functions of time, they are converted to constants by substituting the time values in the dynamicsymbols._t time Symbol. This function can also be used for calculating rotational motion parameters. Have a look at the Parameters and Examples for more clarity. Parameters ========== frame : ReferenceFrame The frame to express the motion parameters in acceleration : Vector Acceleration of the object/frame as a function of time velocity : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 position : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 timevalue1 : sympyfiable Value of time for position boundary condition timevalue2 : sympyfiable Value of time for velocity boundary condition Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, get_motion_params, dynamicsymbols >>> from sympy import symbols >>> R = ReferenceFrame('R') >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3') >>> v = v1*R.x + v2*R.y + v3*R.z >>> get_motion_params(R, position = v) (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z) >>> a, b, c = symbols('a b c') >>> v = a*R.x + b*R.y + c*R.z >>> get_motion_params(R, velocity = v) (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z) >>> parameters = get_motion_params(R, acceleration = v) >>> parameters[1] a*t*R.x + b*t*R.y + c*t*R.z >>> parameters[2] a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z """ ##Helper functions def _process_vector_differential(vectdiff, condition, \ variable, ordinate, frame): """ Helper function for get_motion methods. Finds derivative of vectdiff wrt variable, and its integral using the specified boundary condition at value of variable = ordinate. Returns a tuple of - (derivative, function and integral) wrt vectdiff """ #Make sure boundary condition is independent of 'variable' if condition != 0: condition = express(condition, frame, variables=True) #Special case of vectdiff == 0 if vectdiff == Vector(0): return (0, 0, condition) #Express vectdiff completely in condition's frame to give vectdiff1 vectdiff1 = express(vectdiff, frame) #Find derivative of vectdiff vectdiff2 = time_derivative(vectdiff, frame) #Integrate and use boundary condition vectdiff0 = Vector(0) lims = (variable, ordinate, variable) for dim in frame: function1 = vectdiff1.dot(dim) abscissa = dim.dot(condition).subs({variable : ordinate}) # Indefinite integral of 'function1' wrt 'variable', using # the given initial condition (ordinate, abscissa). vectdiff0 += (integrate(function1, lims) + abscissa) * dim #Return tuple return (vectdiff2, vectdiff, vectdiff0) ##Function body _check_frame(frame) #Decide mode of operation based on user's input if 'acceleration' in kwargs: mode = 2 elif 'velocity' in kwargs: mode = 1 else: mode = 0 #All the possible parameters in kwargs #Not all are required for every case #If not specified, set to default values(may or may not be used in #calculations) conditions = ['acceleration', 'velocity', 'position', 'timevalue', 'timevalue1', 'timevalue2'] for i, x in enumerate(conditions): if x not in kwargs: if i < 3: kwargs[x] = Vector(0) else: kwargs[x] = S(0) elif i < 3: _check_vector(kwargs[x]) else: kwargs[x] = sympify(kwargs[x]) if mode == 2: vel = _process_vector_differential(kwargs['acceleration'], kwargs['velocity'], dynamicsymbols._t, kwargs['timevalue2'], frame)[2] pos = _process_vector_differential(vel, kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame)[2] return (kwargs['acceleration'], vel, pos) elif mode == 1: return _process_vector_differential(kwargs['velocity'], kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame) else: vel = time_derivative(kwargs['position'], frame) acc = time_derivative(vel, frame) return (acc, vel, kwargs['position'])
[docs]def partial_velocity(vel_list, u_list, frame): """Returns a list of partial velocities. For a list of velocity or angular velocity vectors the partial derivatives with respect to the supplied generalized speeds are computed, in the specified ReferenceFrame. The output is a list of lists. The outer list has a number of elements equal to the number of supplied velocity vectors. The inner lists are, for each velocity vector, the partial derivatives of that velocity vector with respect to the generalized speeds supplied. Parameters ========== vel_list : list List of velocities of Point's and angular velocities of ReferenceFrame's u_list : list List of independent generalized speeds. frame : ReferenceFrame The ReferenceFrame the partial derivatives are going to be taken in. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame >>> from sympy.physics.mechanics import dynamicsymbols >>> from sympy.physics.mechanics import partial_velocity >>> u = dynamicsymbols('u') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) >>> vel_list = [P.vel(N)] >>> u_list = [u] >>> partial_velocity(vel_list, u_list, N) [[N.x]] """ if not hasattr(vel_list, '__iter__'): raise TypeError('Provide velocities in an iterable') if not hasattr(u_list, '__iter__'): raise TypeError('Provide speeds in an iterable') list_of_pvlists = [] for i in vel_list: pvlist = [] for j in u_list: vel = i.diff(j, frame) pvlist += [vel] list_of_pvlists += [pvlist] return list_of_pvlists
[docs]def linear_momentum(frame, *body): """Linear momentum of the system. This function returns the linear momentum of a system of Particle's and/or RigidBody's. The linear momentum of a system is equal to the vector sum of the linear momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The linear momentum of the system, L, is equal to the vector sum of the linear momentum of the particle, L1, and the linear momentum of the rigid body, L2, i.e- L = L1 + L2 Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = Point('Ac') >>> Ac.set_vel(N, 25 * N.y) >>> I = outer(N.x, N.x) >>> A = RigidBody('A', Ac, N, 20, (I, Ac)) >>> linear_momentum(N, A, Pa) 10*N.x + 500*N.y """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please specify a valid ReferenceFrame') else: linear_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): linear_momentum_sys += e.linear_momentum(frame) else: raise TypeError('*body must have only Particle or RigidBody') return linear_momentum_sys
[docs]def angular_momentum(point, frame, *body): """Angular momentum of a system This function returns the angular momentum of a system of Particle's and/or RigidBody's. The angular momentum of such a system is equal to the vector sum of the angular momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The angular momentum of the system, H, is equal to the vector sum of the linear momentum of the particle, H1, and the linear momentum of the rigid body, H2, i.e- H = H1 + H2 Parameters ========== point : Point The point about which angular momentum of the system is desired. frame : ReferenceFrame The frame in which angular momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> angular_momentum(O, N, Pa, A) 10*N.z """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') if not isinstance(point, Point): raise TypeError('Please specify a valid Point') else: angular_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): angular_momentum_sys += e.angular_momentum(point, frame) else: raise TypeError('*body must have only Particle or RigidBody') return angular_momentum_sys
[docs]def kinetic_energy(frame, *body): """Kinetic energy of a multibody system. This function returns the kinetic energy of a system of Particle's and/or RigidBody's. The kinetic energy of such a system is equal to the sum of the kinetic energies of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The kinetic energy of the system, T, is equal to the vector sum of the kinetic energy of the particle, T1, and the kinetic energy of the rigid body, T2, i.e. T = T1 + T2 Kinetic energy is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> kinetic_energy(N, Pa, A) 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') ke_sys = S(0) for e in body: if isinstance(e, (RigidBody, Particle)): ke_sys += e.kinetic_energy(frame) else: raise TypeError('*body must have only Particle or RigidBody') return ke_sys
[docs]def potential_energy(*body): """Potential energy of a multibody system. This function returns the potential energy of a system of Particle's and/or RigidBody's. The potential energy of such a system is equal to the sum of the potential energy of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The potential energy of the system, V, is equal to the vector sum of the potential energy of the particle, V1, and the potential energy of the rigid body, V2, i.e. V = V1 + V2 Potential energy is a scalar. Parameters ========== body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose potential energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, potential_energy >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> Pa = Particle('Pa', P, m) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> a = ReferenceFrame('a') >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, M, (I, Ac)) >>> Pa.set_potential_energy(m * g * h) >>> A.set_potential_energy(M * g * h) >>> potential_energy(Pa, A) M*g*h + g*h*m """ pe_sys = S(0) for e in body: if isinstance(e, (RigidBody, Particle)): pe_sys += e.potential_energy else: raise TypeError('*body must have only Particle or RigidBody') return pe_sys
[docs]def Lagrangian(frame, *body): """Lagrangian of a multibody system. This function returns the Lagrangian of a system of Particle's and/or RigidBody's. The Lagrangian of such a system is equal to the difference between the kinetic energies and potential energies of its constituents. If T and V are the kinetic and potential energies of a system then it's Lagrangian, L, is defined as L = T - V The Lagrangian is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined to determine the kinetic energy. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> Pa.set_potential_energy(m * g * h) >>> A.set_potential_energy(M * g * h) >>> Lagrangian(N, Pa, A) -M*g*h - g*h*m + 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please supply a valid ReferenceFrame') for e in body: if not isinstance(e, (RigidBody, Particle)): raise TypeError('*body must have only Particle or RigidBody') return kinetic_energy(frame, *body) - potential_energy(*body)