Source code for sympy.physics.quantum.tensorproduct

"""Abstract tensor product."""

from __future__ import print_function, division

from sympy import Expr, Add, Mul, Matrix, Pow, sympify
from sympy.core.compatibility import u
from sympy.core.trace import Tr
from sympy.printing.pretty.stringpict import prettyForm

from sympy.physics.quantum.qexpr import QuantumError
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.matrixutils import (

__all__ = [

# Tensor product

[docs]class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non- commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of sympy matrices:: >>> from sympy import I, Matrix, symbols >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> TensorProduct(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) We can also construct tensor products of non-commutative symbols: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product): >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ is_commutative = False def __new__(cls, *args): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(sympify(args)) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part*new_args[0] else: tp = Expr.__new__(cls, *new_args) return c_part*tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: cp, ncp = arg.args_cnc() c_part.extend(list(cp)) nc_parts.append(Mul._from_args(ncp)) return c_part, nc_parts def _eval_adjoint(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _eval_rewrite(self, pattern, rule, **hints): sargs = self.args terms = [ t._eval_rewrite(pattern, rule, **hints) for t in sargs] return TensorProduct(*terms).expand(tensorproduct=True) def _sympystr(self, printer, *args): from sympy.printing.str import sstr length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + sstr(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length - 1: s = s + 'x' return s def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u('\u2a02') + u(' '))) else: pform = prettyForm(*pform.right('x' + ' ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length - 1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] stop = False for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:]) if isinstance(tp, TensorProduct): tp = tp._eval_expand_tensorproduct() add_args.append(tp) break if add_args: return Add(*add_args) else: return self def _eval_trace(self, **kwargs): indices = kwargs.get('indices', None) exp = tensor_product_simp(self) if indices is None or len(indices) == 0: return Mul(*[Tr(arg).doit() for arg in exp.args]) else: return Mul(*[Tr(value).doit() if idx in indices else value for idx, value in enumerate(exp.args)])
def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import \ tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Pow, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = e.args_cnc() n_nc = len(nc_part) if n_nc == 0 or n_nc == 1: return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i]*next.args[i] else: # this won't quite work as we don't want next in the TensorProduct for i in range(len(new_args)): new_args[i] = new_args[i]*next current = next return Mul(*c_part)*TensorProduct(*new_args) else: return e
[docs]def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators`` of ``TensorProducts``. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return tensor_product_simp(e.base)**e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e