Source code for sympy.core.exprtools

"""Tools for manipulating of large commutative expressions. """

from __future__ import print_function, division

from sympy.core.add import Add
from sympy.core.compatibility import iterable, is_sequence, SYMPY_INTS
from sympy.core.mul import Mul, _keep_coeff
from sympy.core.power import Pow
from sympy.core.basic import Basic, preorder_traversal
from sympy.core.expr import Expr
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational, Integer, Number, I
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.coreerrors import NonCommutativeExpression
from sympy.core.containers import Tuple, Dict
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import (common_prefix, common_suffix,
        variations, ordered)

from collections import defaultdict


def _isnumber(i):
    return isinstance(i, (SYMPY_INTS, float)) or i.is_Number


def decompose_power(expr):
    """
    Decompose power into symbolic base and integer exponent.

    This is strictly only valid if the exponent from which
    the integer is extracted is itself an integer or the
    base is positive. These conditions are assumed and not
    checked here.

    Examples
    ========

    >>> from sympy.core.exprtools import decompose_power
    >>> from sympy.abc import x, y

    >>> decompose_power(x)
    (x, 1)
    >>> decompose_power(x**2)
    (x, 2)
    >>> decompose_power(x**(2*y))
    (x**y, 2)
    >>> decompose_power(x**(2*y/3))
    (x**(y/3), 2)

    """
    base, exp = expr.as_base_exp()

    if exp.is_Number:
        if exp.is_Rational:
            if not exp.is_Integer:
                base = Pow(base, Rational(1, exp.q))

            exp = exp.p
        else:
            base, exp = expr, 1
    else:
        exp, tail = exp.as_coeff_Mul(rational=True)

        if exp is S.NegativeOne:
            base, exp = Pow(base, tail), -1
        elif exp is not S.One:
            tail = _keep_coeff(Rational(1, exp.q), tail)
            base, exp = Pow(base, tail), exp.p
        else:
            base, exp = expr, 1

    return base, exp


class Factors(object):
    """Efficient representation of ``f_1*f_2*...*f_n``."""

    __slots__ = ['factors', 'gens']

    def __init__(self, factors=None):  # Factors
        """Initialize Factors from dict or expr.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x
        >>> from sympy import I
        >>> e = 2*x**3
        >>> Factors(e)
        Factors({2: 1, x: 3})
        >>> Factors(e.as_powers_dict())
        Factors({2: 1, x: 3})
        >>> f = _
        >>> f.factors  # underlying dictionary
        {2: 1, x: 3}
        >>> f.gens  # base of each factor
        frozenset([2, x])
        >>> Factors(0)
        Factors({0: 1})
        >>> Factors(I)
        Factors({I: 1})

        Notes
        =====

        Although a dictionary can be passed, only minimal checking is
        performed: powers of -1 and I are made canonical.

        """
        if isinstance(factors, (SYMPY_INTS, float)):
            factors = S(factors)

        if isinstance(factors, Factors):
            factors = factors.factors.copy()
        elif factors is None or factors is S.One:
            factors = {}
        elif factors is S.Zero or factors == 0:
            factors = {S.Zero: S.One}
        elif isinstance(factors, Number):
            n = factors
            factors = {}
            if n < 0:
                factors[S.NegativeOne] = S.One
                n = -n
            if n is not S.One:
                if n.is_Float or n.is_Integer or n is S.Infinity:
                    factors[n] = S.One
                elif n.is_Rational:
                    # since we're processing Numbers, the denominator is
                    # stored with a negative exponent; all other factors
                    # are left .
                    if n.p != 1:
                        factors[Integer(n.p)] = S.One
                    factors[Integer(n.q)] = S.NegativeOne
                else:
                    raise ValueError('Expected Float|Rational|Integer, not %s' % n)
        elif isinstance(factors, Basic) and not factors.args:
            factors = {factors: S.One}
        elif isinstance(factors, Expr):
            c, nc = factors.args_cnc()
            i = c.count(I)
            for _ in range(i):
                c.remove(I)
            factors = dict(Mul._from_args(c).as_powers_dict())
            if i:
                factors[I] = S.One*i
            if nc:
                factors[Mul(*nc, evaluate=False)] = S.One
        else:
            factors = factors.copy()  # /!\ should be dict-like

            # tidy up -/+1 and I exponents if Rational

            handle = []
            for k in factors:
                if k is I or k in (-1, 1):
                    handle.append(k)
            if handle:
                i1 = S.One
                for k in handle:
                    if not _isnumber(factors[k]):
                        continue
                    i1 *= k**factors.pop(k)
                if i1 is not S.One:
                    for a in i1.args if i1.is_Mul else [i1]:  # at worst, -1.0*I*(-1)**e
                        if a is S.NegativeOne:
                            factors[a] = S.One
                        elif a is I:
                            factors[I] = S.One
                        elif a.is_Pow:
                            if S.NegativeOne not in factors:
                                factors[S.NegativeOne] = S.Zero
                            factors[S.NegativeOne] += a.exp
                        elif a == 1:
                            factors[a] = S.One
                        elif a == -1:
                            factors[-a] = S.One
                            factors[S.NegativeOne] = S.One
                        else:
                            raise ValueError('unexpected factor in i1: %s' % a)

        self.factors = factors
        try:
            self.gens = frozenset(factors.keys())
        except AttributeError:
            raise TypeError('expecting Expr or dictionary')

    def __hash__(self):  # Factors
        keys = tuple(ordered(self.factors.keys()))
        values = [self.factors[k] for k in keys]
        return hash((keys, values))

    def __repr__(self):  # Factors
        return "Factors({%s})" % ', '.join(
            ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])

    @property
    def is_zero(self):  # Factors
        """
        >>> from sympy.core.exprtools import Factors
        >>> Factors(0).is_zero
        True
        """
        f = self.factors
        return len(f) == 1 and S.Zero in f

    @property
    def is_one(self):  # Factors
        """
        >>> from sympy.core.exprtools import Factors
        >>> Factors(1).is_one
        True
        """
        return not self.factors

    def as_expr(self):  # Factors
        """Return the underlying expression.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y
        >>> Factors((x*y**2).as_powers_dict()).as_expr()
        x*y**2

        """

        args = []
        for factor, exp in self.factors.items():
            if exp != 1:
                b, e = factor.as_base_exp()
                if isinstance(exp, int):
                    e = _keep_coeff(Integer(exp), e)
                elif isinstance(exp, Rational):
                    e = _keep_coeff(exp, e)
                else:
                    e *= exp
                args.append(b**e)
            else:
                args.append(factor)
        return Mul(*args)

    def mul(self, other):  # Factors
        """Return Factors of ``self * other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.mul(b)
        Factors({x: 2, y: 3, z: -1})
        >>> a*b
        Factors({x: 2, y: 3, z: -1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
        if any(f.is_zero for f in (self, other)):
            return Factors(S.Zero)
        factors = dict(self.factors)

        for factor, exp in other.factors.items():
            if factor in factors:
                exp = factors[factor] + exp

                if not exp:
                    del factors[factor]
                    continue

            factors[factor] = exp

        return Factors(factors)

    def normal(self, other):
        """Return ``self`` and ``other`` with ``gcd`` removed from each.
        The only differences between this and method ``div`` is that this
        is 1) optimized for the case when there are few factors in common and
        2) this does not raise an error if ``other`` is zero.

        See Also
        ========
        div

        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                return (Factors(), Factors(S.Zero))
            if self.is_zero:
                return (Factors(S.Zero), Factors())

        self_factors = dict(self.factors)
        other_factors = dict(other.factors)

        for factor, self_exp in self.factors.items():
            try:
                other_exp = other.factors[factor]
            except KeyError:
                continue

            exp = self_exp - other_exp

            if not exp:
                del self_factors[factor]
                del other_factors[factor]
            elif _isnumber(exp):
                if exp > 0:
                    self_factors[factor] = exp
                    del other_factors[factor]
                else:
                    del self_factors[factor]
                    other_factors[factor] = -exp
            else:
                r = self_exp.extract_additively(other_exp)
                if r is not None:
                    if r:
                        self_factors[factor] = r
                        del other_factors[factor]
                    else:  # should be handled already
                        del self_factors[factor]
                        del other_factors[factor]
                else:
                    sc, sa = self_exp.as_coeff_Add()
                    if sc:
                        oc, oa = other_exp.as_coeff_Add()
                        diff = sc - oc
                        if diff > 0:
                            self_factors[factor] -= oc
                            other_exp = oa
                        elif diff < 0:
                            self_factors[factor] -= sc
                            other_factors[factor] -= sc
                            other_exp = oa - diff
                        else:
                            self_factors[factor] = sa
                            other_exp = oa
                    if other_exp:
                        other_factors[factor] = other_exp
                    else:
                        del other_factors[factor]

        return Factors(self_factors), Factors(other_factors)

    def div(self, other):  # Factors
        """Return ``self`` and ``other`` with ``gcd`` removed from each.
        This is optimized for the case when there are many factors in common.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> from sympy import S

        >>> a = Factors((x*y**2).as_powers_dict())
        >>> a.div(a)
        (Factors({}), Factors({}))
        >>> a.div(x*z)
        (Factors({y: 2}), Factors({z: 1}))

        The ``/`` operator only gives ``quo``:

        >>> a/x
        Factors({y: 2})

        Factors treats its factors as though they are all in the numerator, so
        if you violate this assumption the results will be correct but will
        not strictly correspond to the numerator and denominator of the ratio:

        >>> a.div(x/z)
        (Factors({y: 2}), Factors({z: -1}))

        Factors is also naive about bases: it does not attempt any denesting
        of Rational-base terms, for example the following does not become
        2**(2*x)/2.

        >>> Factors(2**(2*x + 2)).div(S(8))
        (Factors({2: 2*x + 2}), Factors({8: 1}))

        factor_terms can clean up such Rational-bases powers:

        >>> from sympy.core.exprtools import factor_terms
        >>> n, d = Factors(2**(2*x + 2)).div(S(8))
        >>> n.as_expr()/d.as_expr()
        2**(2*x + 2)/8
        >>> factor_terms(_)
        2**(2*x)/2

        """
        quo, rem = dict(self.factors), {}

        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                raise ZeroDivisionError
            if self.is_zero:
                return (Factors(S.Zero), Factors())

        for factor, exp in other.factors.items():
            if factor in quo:
                d = quo[factor] - exp
                if _isnumber(d):
                    if d <= 0:
                        del quo[factor]

                    if d >= 0:
                        if d:
                            quo[factor] = d

                        continue

                    exp = -d

                else:
                    r = quo[factor].extract_additively(exp)
                    if r is not None:
                        if r:
                            quo[factor] = r
                        else:  # should be handled already
                            del quo[factor]
                    else:
                        other_exp = exp
                        sc, sa = quo[factor].as_coeff_Add()
                        if sc:
                            oc, oa = other_exp.as_coeff_Add()
                            diff = sc - oc
                            if diff > 0:
                                quo[factor] -= oc
                                other_exp = oa
                            elif diff < 0:
                                quo[factor] -= sc
                                other_exp = oa - diff
                            else:
                                quo[factor] = sa
                                other_exp = oa
                        if other_exp:
                            rem[factor] = other_exp
                        else:
                            assert factor not in rem
                    continue

            rem[factor] = exp

        return Factors(quo), Factors(rem)

    def quo(self, other):  # Factors
        """Return numerator Factor of ``self / other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.quo(b)  # same as a/b
        Factors({y: 1})
        """
        return self.div(other)[0]

    def rem(self, other):  # Factors
        """Return denominator Factors of ``self / other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.rem(b)
        Factors({z: -1})
        >>> a.rem(a)
        Factors({})
        """
        return self.div(other)[1]

    def pow(self, other):  # Factors
        """Return self raised to a non-negative integer power.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> a**2
        Factors({x: 2, y: 4})

        """
        if isinstance(other, Factors):
            other = other.as_expr()
            if other.is_Integer:
                other = int(other)
        if isinstance(other, SYMPY_INTS) and other >= 0:
            factors = {}

            if other:
                for factor, exp in self.factors.items():
                    factors[factor] = exp*other

            return Factors(factors)
        else:
            raise ValueError("expected non-negative integer, got %s" % other)

    def gcd(self, other):  # Factors
        """Return Factors of ``gcd(self, other)``. The keys are
        the intersection of factors with the minimum exponent for
        each factor.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.gcd(b)
        Factors({x: 1, y: 1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                return Factors(self.factors)

        factors = {}

        for factor, exp in self.factors.items():
            factor, exp = sympify(factor), sympify(exp)
            if factor in other.factors:
                lt = (exp - other.factors[factor]).is_negative
                if lt == True:
                    factors[factor] = exp
                elif lt == False:
                    factors[factor] = other.factors[factor]

        return Factors(factors)

    def lcm(self, other):  # Factors
        """Return Factors of ``lcm(self, other)`` which are
        the union of factors with the maximum exponent for
        each factor.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.lcm(b)
        Factors({x: 1, y: 2, z: -1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if any(f.is_zero for f in (self, other)):
                return Factors(S.Zero)

        factors = dict(self.factors)

        for factor, exp in other.factors.items():
            if factor in factors:
                exp = max(exp, factors[factor])

            factors[factor] = exp

        return Factors(factors)

    def __mul__(self, other):  # Factors
        return self.mul(other)

    def __divmod__(self, other):  # Factors
        return self.div(other)

    def __div__(self, other):  # Factors
        return self.quo(other)

    __truediv__ = __div__

    def __mod__(self, other):  # Factors
        return self.rem(other)

    def __pow__(self, other):  # Factors
        return self.pow(other)

    def __eq__(self, other):  # Factors
        if not isinstance(other, Factors):
            other = Factors(other)
        return self.factors == other.factors

    def __ne__(self, other):  # Factors
        return not self.__eq__(other)


class Term(object):
    """Efficient representation of ``coeff*(numer/denom)``. """

    __slots__ = ['coeff', 'numer', 'denom']

    def __init__(self, term, numer=None, denom=None):  # Term
        if numer is None and denom is None:
            if not term.is_commutative:
                raise NonCommutativeExpression(
                    'commutative expression expected')

            coeff, factors = term.as_coeff_mul()
            numer, denom = defaultdict(int), defaultdict(int)

            for factor in factors:
                base, exp = decompose_power(factor)

                if base.is_Add:
                    cont, base = base.primitive()
                    coeff *= cont**exp

                if exp > 0:
                    numer[base] += exp
                else:
                    denom[base] += -exp

            numer = Factors(numer)
            denom = Factors(denom)
        else:
            coeff = term

            if numer is None:
                numer = Factors()

            if denom is None:
                denom = Factors()

        self.coeff = coeff
        self.numer = numer
        self.denom = denom

    def __hash__(self):  # Term
        return hash((self.coeff, self.numer, self.denom))

    def __repr__(self):  # Term
        return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)

    def as_expr(self):  # Term
        return self.coeff*(self.numer.as_expr()/self.denom.as_expr())

    def mul(self, other):  # Term
        coeff = self.coeff*other.coeff
        numer = self.numer.mul(other.numer)
        denom = self.denom.mul(other.denom)

        numer, denom = numer.normal(denom)

        return Term(coeff, numer, denom)

    def inv(self):  # Term
        return Term(1/self.coeff, self.denom, self.numer)

    def quo(self, other):  # Term
        return self.mul(other.inv())

    def pow(self, other):  # Term
        if other < 0:
            return self.inv().pow(-other)
        else:
            return Term(self.coeff ** other,
                        self.numer.pow(other),
                        self.denom.pow(other))

    def gcd(self, other):  # Term
        return Term(self.coeff.gcd(other.coeff),
                    self.numer.gcd(other.numer),
                    self.denom.gcd(other.denom))

    def lcm(self, other):  # Term
        return Term(self.coeff.lcm(other.coeff),
                    self.numer.lcm(other.numer),
                    self.denom.lcm(other.denom))

    def __mul__(self, other):  # Term
        if isinstance(other, Term):
            return self.mul(other)
        else:
            return NotImplemented

    def __div__(self, other):  # Term
        if isinstance(other, Term):
            return self.quo(other)
        else:
            return NotImplemented

    __truediv__ = __div__

    def __pow__(self, other):  # Term
        if isinstance(other, SYMPY_INTS):
            return self.pow(other)
        else:
            return NotImplemented

    def __eq__(self, other):  # Term
        return (self.coeff == other.coeff and
                self.numer == other.numer and
                self.denom == other.denom)

    def __ne__(self, other):  # Term
        return not self.__eq__(other)


def _gcd_terms(terms, isprimitive=False, fraction=True):
    """Helper function for :func:`gcd_terms`.

    If ``isprimitive`` is True then the call to primitive
    for an Add will be skipped. This is useful when the
    content has already been extrated.

    If ``fraction`` is True then the expression will appear over a common
    denominator, the lcm of all term denominators.
    """

    if isinstance(terms, Basic) and not isinstance(terms, Tuple):
        terms = Add.make_args(terms)

    terms = list(map(Term, [t for t in terms if t]))

    # there is some simplification that may happen if we leave this
    # here rather than duplicate it before the mapping of Term onto
    # the terms
    if len(terms) == 0:
        return S.Zero, S.Zero, S.One

    if len(terms) == 1:
        cont = terms[0].coeff
        numer = terms[0].numer.as_expr()
        denom = terms[0].denom.as_expr()

    else:
        cont = terms[0]
        for term in terms[1:]:
            cont = cont.gcd(term)

        for i, term in enumerate(terms):
            terms[i] = term.quo(cont)

        if fraction:
            denom = terms[0].denom

            for term in terms[1:]:
                denom = denom.lcm(term.denom)

            numers = []
            for term in terms:
                numer = term.numer.mul(denom.quo(term.denom))
                numers.append(term.coeff*numer.as_expr())
        else:
            numers = [t.as_expr() for t in terms]
            denom = Term(S(1)).numer

        cont = cont.as_expr()
        numer = Add(*numers)
        denom = denom.as_expr()

    if not isprimitive and numer.is_Add:
        _cont, numer = numer.primitive()
        cont *= _cont

    return cont, numer, denom


[docs]def gcd_terms(terms, isprimitive=False, clear=True, fraction=True): """Compute the GCD of ``terms`` and put them together. ``terms`` can be an expression or a non-Basic sequence of expressions which will be handled as though they are terms from a sum. If ``isprimitive`` is True the _gcd_terms will not run the primitive method on the terms. ``clear`` controls the removal of integers from the denominator of an Add expression. When True (default), all numerical denominator will be cleared; when False the denominators will be cleared only if all terms had numerical denominators other than 1. ``fraction``, when True (default), will put the expression over a common denominator. Examples ======== >>> from sympy.core import gcd_terms >>> from sympy.abc import x, y >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2) y*(x + 1)*(x + y + 1) >>> gcd_terms(x/2 + 1) (x + 2)/2 >>> gcd_terms(x/2 + 1, clear=False) x/2 + 1 >>> gcd_terms(x/2 + y/2, clear=False) (x + y)/2 >>> gcd_terms(x/2 + 1/x) (x**2 + 2)/(2*x) >>> gcd_terms(x/2 + 1/x, fraction=False) (x + 2/x)/2 >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False) x/2 + 1/x >>> gcd_terms(x/2/y + 1/x/y) (x**2 + 2)/(2*x*y) >>> gcd_terms(x/2/y + 1/x/y, fraction=False, clear=False) (x + 2/x)/(2*y) The ``clear`` flag was ignored in this case because the returned expression was a rational expression, not a simple sum. See Also ======== factor_terms, sympy.polys.polytools.terms_gcd """ def mask(terms): """replace nc portions of each term with a unique Dummy symbols and return the replacements to restore them""" args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms] reps = [] for i, (c, nc) in enumerate(args): if nc: nc = Mul._from_args(nc) d = Dummy() reps.append((d, nc)) c.append(d) args[i] = Mul._from_args(c) else: args[i] = c return args, dict(reps) isadd = isinstance(terms, Add) addlike = isadd or not isinstance(terms, Basic) and \ is_sequence(terms, include=set) and \ not isinstance(terms, Dict) if addlike: if isadd: # i.e. an Add terms = list(terms.args) else: terms = sympify(terms) terms, reps = mask(terms) cont, numer, denom = _gcd_terms(terms, isprimitive, fraction) numer = numer.xreplace(reps) coeff, factors = cont.as_coeff_Mul() return _keep_coeff(coeff, factors*numer/denom, clear=clear) if not isinstance(terms, Basic): return terms if terms.is_Atom: return terms if terms.is_Mul: c, args = terms.as_coeff_mul() return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction) for i in args]), clear=clear) def handle(a): # don't treat internal args like terms of an Add if not isinstance(a, Expr): if isinstance(a, Basic): return a.func(*[handle(i) for i in a.args]) return type(a)([handle(i) for i in a]) return gcd_terms(a, isprimitive, clear, fraction) if isinstance(terms, Dict): return Dict(*[(k, handle(v)) for k, v in terms.args]) return terms.func(*[handle(i) for i in terms.args])
[docs]def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True): """Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed. If radical=True then a radical common to all terms will be factored out of any Add sub-expressions of the expr. If clear=False (default) then coefficients will not be separated from a single Add if they can be distributed to leave one or more terms with integer coefficients. If fraction=True (default is False) then a common denominator will be constructed for the expression. If sign=True (default) then even if the only factor in common is a -1, it will be factored out of the expression. Examples ======== >>> from sympy import factor_terms, Symbol >>> from sympy.abc import x, y >>> factor_terms(x + x*(2 + 4*y)**3) x*(8*(2*y + 1)**3 + 1) >>> A = Symbol('A', commutative=False) >>> factor_terms(x*A + x*A + x*y*A) x*(y*A + 2*A) When ``clear`` is False, a rational will only be factored out of an Add expression if all terms of the Add have coefficients that are fractions: >>> factor_terms(x/2 + 1, clear=False) x/2 + 1 >>> factor_terms(x/2 + 1, clear=True) (x + 2)/2 This only applies when there is a single Add that the coefficient multiplies: >>> factor_terms(x*y/2 + y, clear=True) y*(x + 2)/2 >>> factor_terms(x*y/2 + y, clear=False) == _ True If a -1 is all that can be factored out, to *not* factor it out, the flag ``sign`` must be False: >>> factor_terms(-x - y) -(x + y) >>> factor_terms(-x - y, sign=False) -x - y >>> factor_terms(-2*x - 2*y, sign=False) -2*(x + y) See Also ======== gcd_terms, sympy.polys.polytools.terms_gcd """ from sympy.simplify.simplify import bottom_up def do(expr): is_iterable = iterable(expr) if not isinstance(expr, Basic) or expr.is_Atom: if is_iterable: return type(expr)([do(i) for i in expr]) return expr if expr.is_Pow or expr.is_Function or \ is_iterable or not hasattr(expr, 'args_cnc'): args = expr.args newargs = tuple([do(i) for i in args]) if newargs == args: return expr return expr.func(*newargs) cont, p = expr.as_content_primitive(radical=radical) if p.is_Add: list_args = [do(a) for a in Add.make_args(p)] # get a common negative (if there) which gcd_terms does not remove if all(a.as_coeff_Mul()[0] < 0 for a in list_args): cont = -cont list_args = [-a for a in list_args] # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2) special = {} for i, a in enumerate(list_args): b, e = a.as_base_exp() if e.is_Mul and e != Mul(*e.args): list_args[i] = Dummy() special[list_args[i]] = a # rebuild p not worrying about the order which gcd_terms will fix p = Add._from_args(list_args) p = gcd_terms(p, isprimitive=True, clear=clear, fraction=fraction).xreplace(special) elif p.args: p = p.func( *[do(a) for a in p.args]) rv = _keep_coeff(cont, p, clear=clear, sign=sign) return rv expr = sympify(expr) return do(expr)
def _mask_nc(eq, name=None): """ Return ``eq`` with non-commutative objects replaced with Dummy symbols. A dictionary that can be used to restore the original values is returned: if it is None, the expression is noncommutative and cannot be made commutative. The third value returned is a list of any non-commutative symbols that appear in the returned equation. ``name``, if given, is the name that will be used with numered Dummy variables that will replace the non-commutative objects and is mainly used for doctesting purposes. Notes ===== All non-commutative objects other than Symbols are replaced with a non-commutative Symbol. Identical objects will be identified by identical symbols. If there is only 1 non-commutative object in an expression it will be replaced with a commutative symbol. Otherwise, the non-commutative entities are retained and the calling routine should handle replacements in this case since some care must be taken to keep track of the ordering of symbols when they occur within Muls. Examples ======== >>> from sympy.physics.secondquant import Commutator, NO, F, Fd >>> from sympy import symbols, Mul >>> from sympy.core.exprtools import _mask_nc >>> from sympy.abc import x, y >>> A, B, C = symbols('A,B,C', commutative=False) One nc-symbol: >>> _mask_nc(A**2 - x**2, 'd') (_d0**2 - x**2, {_d0: A}, []) Multiple nc-symbols: >>> _mask_nc(A**2 - B**2, 'd') (A**2 - B**2, None, [A, B]) An nc-object with nc-symbols but no others outside of it: >>> _mask_nc(1 + x*Commutator(A, B), 'd') (_d0*x + 1, {_d0: Commutator(A, B)}, []) >>> _mask_nc(NO(Fd(x)*F(y)), 'd') (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, []) Multiple nc-objects: >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B) >>> _mask_nc(eq, 'd') (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1]) Multiple nc-objects and nc-symbols: >>> eq = A*Commutator(A, B) + B*Commutator(A, C) >>> _mask_nc(eq, 'd') (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B]) If there is an object that: - doesn't contain nc-symbols - but has arguments which derive from Basic, not Expr - and doesn't define an _eval_is_commutative routine then it will give False (or None?) for the is_commutative test. Such objects are also removed by this routine: >>> from sympy import Basic >>> eq = (1 + Mul(Basic(), Basic(), evaluate=False)) >>> eq.is_commutative False >>> _mask_nc(eq, 'd') (_d0**2 + 1, {_d0: Basic()}, []) """ name = name or 'mask' # Make Dummy() append sequential numbers to the name def numbered_names(): i = 0 while True: yield name + str(i) i += 1 names = numbered_names() def Dummy(*args, **kwargs): from sympy import Dummy return Dummy(next(names), *args, **kwargs) expr = eq if expr.is_commutative: return eq, {}, [] # identify nc-objects; symbols and other rep = [] nc_obj = set() nc_syms = set() pot = preorder_traversal(expr, keys=default_sort_key) for i, a in enumerate(pot): if any(a == r[0] for r in rep): pot.skip() elif not a.is_commutative: if a.is_Symbol: nc_syms.add(a) elif not (a.is_Add or a.is_Mul or a.is_Pow): if all(s.is_commutative for s in a.free_symbols): rep.append((a, Dummy())) else: nc_obj.add(a) pot.skip() # If there is only one nc symbol or object, it can be factored regularly # but polys is going to complain, so replace it with a Dummy. if len(nc_obj) == 1 and not nc_syms: rep.append((nc_obj.pop(), Dummy())) elif len(nc_syms) == 1 and not nc_obj: rep.append((nc_syms.pop(), Dummy())) # Any remaining nc-objects will be replaced with an nc-Dummy and # identified as an nc-Symbol to watch out for nc_obj = sorted(nc_obj, key=default_sort_key) for n in nc_obj: nc = Dummy(commutative=False) rep.append((n, nc)) nc_syms.add(nc) expr = expr.subs(rep) nc_syms = list(nc_syms) nc_syms.sort(key=default_sort_key) return expr, dict([(v, k) for k, v in rep]) or None, nc_syms def factor_nc(expr): """Return the factored form of ``expr`` while handling non-commutative expressions. **examples** >>> from sympy.core.exprtools import factor_nc >>> from sympy import Symbol >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> B = Symbol('B', commutative=False) >>> factor_nc((x**2 + 2*A*x + A**2).expand()) (x + A)**2 >>> factor_nc(((x + A)*(x + B)).expand()) (x + A)*(x + B) """ from sympy.simplify.simplify import powsimp from sympy.polys import gcd, factor def _pemexpand(expr): "Expand with the minimal set of hints necessary to check the result." return expr.expand(deep=True, mul=True, power_exp=True, power_base=False, basic=False, multinomial=True, log=False) expr = sympify(expr) if not isinstance(expr, Expr) or not expr.args: return expr if not expr.is_Add: return expr.func(*[factor_nc(a) for a in expr.args]) expr, rep, nc_symbols = _mask_nc(expr) if rep: return factor(expr).subs(rep) else: args = [a.args_cnc() for a in Add.make_args(expr)] c = g = l = r = S.One hit = False # find any commutative gcd term for i, a in enumerate(args): if i == 0: c = Mul._from_args(a[0]) elif a[0]: c = gcd(c, Mul._from_args(a[0])) else: c = S.One if c is not S.One: hit = True c, g = c.as_coeff_Mul() if g is not S.One: for i, (cc, _) in enumerate(args): cc = list(Mul.make_args(Mul._from_args(list(cc))/g)) args[i][0] = cc for i, (cc, _) in enumerate(args): cc[0] = cc[0]/c args[i][0] = cc # find any noncommutative common prefix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_prefix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][0].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][0].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True l = b**e il = b**-e for i, a in enumerate(args): args[i][1][0] = il*args[i][1][0] break if not ok: break else: hit = True lenn = len(n) l = Mul(*n) for i, a in enumerate(args): args[i][1] = args[i][1][lenn:] # find any noncommutative common suffix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_suffix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][-1].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][-1].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True r = b**e il = b**-e for i, a in enumerate(args): args[i][1][-1] = args[i][1][-1]*il break if not ok: break else: hit = True lenn = len(n) r = Mul(*n) for i, a in enumerate(args): args[i][1] = a[1][:len(a[1]) - lenn] if hit: mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args]) else: mid = expr # sort the symbols so the Dummys would appear in the same # order as the original symbols, otherwise you may introduce # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2 # and the former factors into two terms, (A - B)*(A + B) while the # latter factors into 3 terms, (-1)*(x - y)*(x + y) rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)] unrep1 = [(v, k) for k, v in rep1] unrep1.reverse() new_mid, r2, _ = _mask_nc(mid.subs(rep1)) new_mid = powsimp(factor(new_mid)) new_mid = new_mid.subs(r2).subs(unrep1) if new_mid.is_Pow: return _keep_coeff(c, g*l*new_mid*r) if new_mid.is_Mul: # XXX TODO there should be a way to inspect what order the terms # must be in and just select the plausible ordering without # checking permutations cfac = [] ncfac = [] for f in new_mid.args: if f.is_commutative: cfac.append(f) else: b, e = f.as_base_exp() if e.is_Integer: ncfac.extend([b]*e) else: ncfac.append(f) pre_mid = g*Mul(*cfac)*l target = _pemexpand(expr/c) for s in variations(ncfac, len(ncfac)): ok = pre_mid*Mul(*s)*r if _pemexpand(ok) == target: return _keep_coeff(c, ok) # mid was an Add that didn't factor successfully return _keep_coeff(c, g*l*mid*r)