Source code for sympy.matrices.matrices

from __future__ import print_function, division

import collections
from sympy.core.add import Add
from sympy.core.basic import Basic, C, Atom
from sympy.core.expr import Expr
from sympy.core.function import count_ops
from sympy.core.logic import fuzzy_and
from sympy.core.power import Pow
from sympy.core.symbol import Symbol, Dummy, symbols
from sympy.core.numbers import Integer, ilcm, Rational, Float
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.core.compatibility import is_sequence, default_sort_key, xrange, NotIterable

from sympy.polys import PurePoly, roots, cancel, gcd
from sympy.simplify import simplify as _simplify, signsimp, nsimplify
from sympy.utilities.iterables import flatten
from sympy.functions.elementary.miscellaneous import sqrt, Max, Min
from sympy.functions import exp, factorial
from sympy.printing import sstr
from sympy.core.compatibility import reduce, as_int, string_types
from sympy.utilities.exceptions import SymPyDeprecationWarning

from types import FunctionType


def _iszero(x):
    """Returns True if x is zero."""
    return x.is_zero


[docs]class MatrixError(Exception): pass
[docs]class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass
[docs]class NonSquareMatrixError(ShapeError): pass
class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % (self.name)
[docs]class MatrixBase(object): # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True is_Identity = None _class_priority = 3 _sympify = staticmethod(sympify) __hash__ = None # Mutable @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) """ from sympy.matrices.sparse import SparseMatrix # Matrix(SparseMatrix(...)) if len(args) == 1 and isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) if len(args) == 1 and isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) if len(args) == 1 and isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat if len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], collections.Callable): operation = args[2] flat_list = [] for i in range(rows): flat_list.extend([cls._sympify(operation(cls._sympify(i), j)) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows*cols: raise ValueError('List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix(numpy.ones((2, 2))) elif len(args) == 1 and hasattr(args[0], "__array__"): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = args[0].__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: rows, cols = arr.shape[0], 1 flat_list = [S.Zero]*rows for i in range(len(arr)): flat_list[i] = cls._sympify(arr[i]) return rows, cols, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif len(args) == 1 and is_sequence(args[0])\ and not isinstance(args[0], DeferredVector): in_mat = [] ncol = set() for row in args[0]: if isinstance(row, MatrixBase): in_mat.extend(row.tolist()) if row.cols or row.rows: # only pay attention if it's not 0x0 ncol.add(row.cols) else: in_mat.append(row) try: ncol.add(len(row)) except TypeError: ncol.add(1) if len(ncol) > 1: raise ValueError("Got rows of variable lengths: %s" % sorted(list(ncol))) cols = ncol.pop() if ncol else 0 rows = len(in_mat) if cols else 0 if rows: if not is_sequence(in_mat[0]): cols = 1 flat_list = [cls._sympify(i) for i in in_mat] return rows, cols, flat_list flat_list = [] for j in range(rows): for i in range(cols): flat_list.append(cls._sympify(in_mat[j][i])) # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] else: raise TypeError("Data type not understood") return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def copy(self): return self._new(self.rows, self.cols, self._mat) def trace(self): if not self.is_square: raise NonSquareMatrixError() return self._eval_trace() def inv(self, method=None, **kwargs): if not self.is_square: raise NonSquareMatrixError() if method is not None: kwargs['method'] = method return self._eval_inverse(**kwargs)
[docs] def inv_mod(self, m): r""" Returns the inverse of the matrix `K` (mod `m`), if it exists. Method to find the matrix inverse of `K` (mod `m`) implemented in this function: * Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`. * Compute `r = 1/\mathrm{det}(K) \pmod m`. * `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.inv_mod(5) Matrix([ [3, 1], [4, 2]]) >>> A.inv_mod(3) Matrix([ [1, 1], [0, 1]]) """ from sympy.ntheory import totient if not self.is_square: raise NonSquareMatrixError() N = self.cols phi = totient(m) det_K = self.det() if gcd(det_K, m) != 1: raise ValueError('Matrix is not invertible (mod %d)' % m) det_inv = pow(int(det_K), int(phi - 1), int(m)) K_adj = self.cofactorMatrix().transpose() K_inv = self.__class__(N, N, [det_inv*K_adj[i, j] % m for i in range(N) for j in range(N)]) return K_inv
def transpose(self): return self._eval_transpose() T = property(transpose, None, None, "Matrix transposition.") def conjugate(self): return self._eval_conjugate() C = property(conjugate, None, None, "By-element conjugation.")
[docs] def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self.T.C
@property
[docs] def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation D: Dirac conjugation """ return self.T.C
@property
[docs] def D(self): """Return Dirac conjugate (if self.rows == 4). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== conjugate: By-element conjugation H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H*mgamma(0)
def __array__(self): from .dense import matrix2numpy return matrix2numpy(self) def __len__(self): """Return the number of elements of self. Implemented mainly so bool(Matrix()) == False. """ return self.rows*self.cols @property
[docs] def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols)
def __sub__(self, a): return self + (-a) def __rsub__(self, a): return (-self) + a def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ if getattr(other, 'is_Matrix', False): # The following implmentation is equivalent, but about 5% slower #ma, na = A.shape #mb, nb = B.shape # #if na != mb: # raise ShapeError() #product = Matrix(ma, nb, lambda i, j: 0) #for i in range(ma): # for j in range(nb): # s = 0 # for k in range(na): # s += A[i, k]*B[k, j] # product[i, j] = s #return product A = self B = other if A.cols != B.rows: raise ShapeError("Matrices size mismatch.") if A.cols == 0: return classof(A, B)._new(A.rows, B.cols, lambda i, j: 0) blst = B.T.tolist() alst = A.tolist() return classof(A, B)._new(A.rows, B.cols, lambda i, j: reduce(lambda k, l: k + l, [a_ik * b_kj for a_ik, b_kj in zip(alst[i], blst[j])])) else: return self._new(self.rows, self.cols, [i*other for i in self._mat]) def __rmul__(self, a): if getattr(a, 'is_Matrix', False): return self._new(a)*self return self*a def __pow__(self, num): from sympy.matrices import eye if not self.is_square: raise NonSquareMatrixError() if isinstance(num, int) or isinstance(num, Integer): n = int(num) if n < 0: return self.inv()**-n # A**-2 = (A**-1)**2 a = eye(self.cols) s = self while n: if n % 2: a *= s n -= 1 if not n: break s *= s n //= 2 return self._new(a) elif isinstance(num, Rational): try: P, D = self.diagonalize() except MatrixError: raise NotImplementedError( "Implemented only for diagonalizable matrices") for i in range(D.rows): D[i, i] = D[i, i]**num return self._new(P*D*P.inv()) else: raise NotImplementedError( "Only integer and rational values are supported") def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" if getattr(other, 'is_Matrix', False): A = self B = other if A.shape != B.shape: raise ShapeError("Matrix size mismatch.") alst = A.tolist() blst = B.tolist() ret = [S.Zero]*A.rows for i in range(A.shape[0]): ret[i] = list(map(lambda j, k: j + k, alst[i], blst[i])) rv = classof(A, B)._new(ret) if 0 in A.shape: rv = rv.reshape(*A.shape) return rv raise TypeError('cannot add matrix and %s' % type(other)) def __radd__(self, other): return self + other def __div__(self, other): return self*(S.One / other) def __truediv__(self, other): return self.__div__(other) def __neg__(self): return -1*self
[docs] def multiply(self, b): """Returns self*b See Also ======== dot cross multiply_elementwise """ return self*b
[docs] def add(self, b): """Return self + b """ return self + b
[docs] def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i,j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res)
def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def __repr__(self): return sstr(self)
[docs] def cholesky(self): """Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) See Also ======== LDLdecomposition LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._cholesky()
[docs] def LDLdecomposition(self): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.T == A This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a square, symmetric, positive-definite and non-singular matrix. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True See Also ======== cholesky LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._LDLdecomposition()
[docs] def lower_triangular_solve(self, rhs): """Solves Ax = B, where A is a lower triangular matrix. See Also ======== upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise ShapeError("Matrices size mismatch.") if not self.is_lower: raise ValueError("Matrix must be lower triangular.") return self._lower_triangular_solve(rhs)
[docs] def upper_triangular_solve(self, rhs): """Solves Ax = B, where A is an upper triangular matrix. See Also ======== lower_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise TypeError("Matrix size mismatch.") if not self.is_upper: raise TypeError("Matrix is not upper triangular.") return self._upper_triangular_solve(rhs)
[docs] def cholesky_solve(self, rhs): """Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. See Also ======== lower_triangular_solve upper_triangular_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if self.is_symmetric(): L = self._cholesky() elif self.rows >= self.cols: L = (self.T*self)._cholesky() rhs = self.T*rhs else: raise NotImplementedError("Under-determined System.") Y = L._lower_triangular_solve(rhs) return (L.T)._upper_triangular_solve(Y)
[docs] def diagonal_solve(self, rhs): """Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.diagonal_solve(B) == B/2 True See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_diagonal: raise TypeError("Matrix should be diagonal") if rhs.rows != self.rows: raise TypeError("Size mis-match") return self._diagonal_solve(rhs)
[docs] def LDLsolve(self, rhs): """Solves Ax = B using LDL decomposition, for a general square and non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.LDLsolve(B) == B/2 True See Also ======== LDLdecomposition lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LUsolve QRsolve pinv_solve """ if self.is_symmetric(): L, D = self.LDLdecomposition() elif self.rows >= self.cols: L, D = (self.T*self).LDLdecomposition() rhs = self.T*rhs else: raise NotImplementedError("Under-determined System.") Y = L._lower_triangular_solve(rhs) Z = D._diagonal_solve(Y) return (L.T)._upper_triangular_solve(Z)
[docs] def solve_least_squares(self, rhs, method='CH'): """Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ if method == 'CH': return self.cholesky_solve(rhs) t = self.T return (t*self).inv(method=method)*t*rhs
[docs] def solve(self, rhs, method='GE'): """Return solution to self*soln = rhs using given inversion method. For a list of possible inversion methods, see the .inv() docstring. """ if not self.is_square: if self.rows < self.cols: raise ValueError('Under-determined system.') elif self.rows > self.cols: raise ValueError('For over-determined system, M, having ' 'more rows than columns, try M.solve_least_squares(rhs).') else: return self.inv(method=method)*rhs
def __mathml__(self): mml = "" for i in range(self.rows): mml += "<matrixrow>" for j in range(self.cols): mml += self[i, j].__mathml__() mml += "</matrixrow>" return "<matrix>" + mml + "</matrix>"
[docs] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) """ cols = self.cols flat_list = self._mat rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._new(len(rowsList), len(colsList), lambda i, j: flat_list[rowsList[i]*cols + colsList[j]])
[docs] def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self's range. See Also ======== key2ij """ islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi
[docs] def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for self's range or returning slices unchanged. See Also ======== key2bounds """ if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx(key, len(self)), self.cols)
[docs] def evalf(self, prec=None, **options): """Apply evalf() to each element of self.""" return self.applyfunc(lambda i: i.evalf(prec, **options))
n = evalf
[docs] def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() set([x]) """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) else: types = (Atom,) result = set() for i in self: result.update( i.atoms(*types) ) return result
@property
[docs] def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols set([x]) """ return set.union(*[i.free_symbols for i in self])
[docs] def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ return self.applyfunc(lambda x: x.subs(*args, **kwargs))
[docs] def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints))
[docs] def simplify(self, ratio=1.7, measure=count_ops): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(ratio, measure))
_eval_simplify = simplify def doit(self, **kwargs): return self
[docs] def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s))
[docs] def LUsolve(self, rhs, iszerofunc=_iszero): """Solve the linear system Ax = rhs for x where A = self. This is for symbolic matrices, for real or complex ones use sympy.mpmath.lu_solve or sympy.mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve QRsolve pinv_solve LUdecomposition """ if rhs.rows != self.rows: raise ShapeError("`self` and `rhs` must have the same number of rows.") A, perm = self.LUdecomposition_Simple(iszerofunc=_iszero) n = self.rows b = rhs.permuteFwd(perm).as_mutable() # forward substitution, all diag entries are scaled to 1 for i in xrange(n): for j in xrange(i): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y*scale) # backward substitution for i in xrange(n - 1, -1, -1): for j in xrange(i + 1, n): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y*scale) scale = A[i, i] b.row_op(i, lambda x, _: x/scale) return rhs.__class__(b)
[docs] def LUdecomposition(self, iszerofunc=_iszero): """Returns the decomposition LU and the row swaps p. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== cholesky LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = self.LUdecomposition_Simple(iszerofunc=_iszero) L = self.zeros(self.rows) U = self.zeros(self.rows) for i in range(self.rows): for j in range(self.rows): if i > j: L[i, j] = combined[i, j] else: if i == j: L[i, i] = 1 U[i, j] = combined[i, j] return L, U, p
[docs] def LUdecomposition_Simple(self, iszerofunc=_iszero): """Returns A comprised of L, U (L's diag entries are 1) and p which is the list of the row swaps (in order). See Also ======== LUdecomposition LUdecompositionFF LUsolve """ if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to apply LUdecomposition_Simple().") n = self.rows A = self.as_mutable() p = [] # factorization for j in range(n): for i in range(j): for k in range(i): A[i, j] = A[i, j] - A[i, k]*A[k, j] pivot = -1 for i in range(j, n): for k in range(j): A[i, j] = A[i, j] - A[i, k]*A[k, j] # find the first non-zero pivot, includes any expression if pivot == -1 and not iszerofunc(A[i, j]): pivot = i if pivot < 0: # this result is based on iszerofunc's analysis of the possible pivots, so even though # the element may not be strictly zero, the supplied iszerofunc's evaluation gave True raise ValueError("No nonzero pivot found; inversion failed.") if pivot != j: # row must be swapped A.row_swap(pivot, j) p.append([pivot, j]) scale = 1 / A[j, j] for i in range(j + 1, n): A[i, j] = A[i, j]*scale return A, p
[docs] def LUdecompositionFF(self): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. **Reference** - W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. See Also ======== LUdecomposition LUdecomposition_Simple LUsolve """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = self.rows, self.cols U, L, P = self.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L[k, k] = Ukk = U[k, k] DD[k, k] = oldpivot*Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk*U[i, j] - U[k, j]*Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U
[docs] def cofactorMatrix(self, method="berkowitz"): """Return a matrix containing the cofactor of each element. See Also ======== cofactor minorEntry minorMatrix adjugate """ out = self._new(self.rows, self.cols, lambda i, j: self.cofactor(i, j, method)) return out
[docs] def minorEntry(self, i, j, method="berkowitz"): """Calculate the minor of an element. See Also ======== minorMatrix cofactor cofactorMatrix """ if not 0 <= i < self.rows or not 0 <= j < self.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " + "(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols) return self.minorMatrix(i, j).det(method)
[docs] def minorMatrix(self, i, j): """Creates the minor matrix of a given element. See Also ======== minorEntry cofactor cofactorMatrix """ if not 0 <= i < self.rows or not 0 <= j < self.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " + "(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols) M = self.as_mutable() M.row_del(i) M.col_del(j) return self._new(M)
[docs] def cofactor(self, i, j, method="berkowitz"): """Calculate the cofactor of an element. See Also ======== cofactorMatrix minorEntry minorMatrix """ if (i + j) % 2 == 0: return self.minorEntry(i, j, method) else: return -1*self.minorEntry(i, j, method)
[docs] def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vectorial function). Parameters ========== self : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both self and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and self can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("self must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i]))
[docs] def QRdecomposition(self): """Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular. Examples ======== This is the example from wikipedia: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) >>> A == Q*R True QR factorization of an identity matrix: >>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== cholesky LDLdecomposition LUdecomposition QRsolve """ cls = self.__class__ self = self.as_mutable() if not self.rows >= self.cols: raise MatrixError( "The number of rows must be greater than columns") n = self.rows m = self.cols rank = n row_reduced = self.rref()[0] for i in range(row_reduced.rows): if row_reduced.row(i).norm() == 0: rank -= 1 if not rank == self.cols: raise MatrixError("The rank of the matrix must match the columns") Q, R = self.zeros(n, m), self.zeros(m) for j in range(m): # for each column vector tmp = self[:, j] # take original v for i in range(j): # subtract the project of self on new vector tmp -= Q[:, i]*self[:, j].dot(Q[:, i]) tmp.expand() # normalize it R[j, j] = tmp.norm() Q[:, j] = tmp / R[j, j] if Q[:, j].norm() != 1: raise NotImplementedError( "Could not normalize the vector %d." % j) for i in range(j): R[i, j] = Q[:, i].dot(self[:, j]) return cls(Q), cls(R)
[docs] def QRsolve(self, b): """Solve the linear system 'Ax = b'. 'self' is the matrix 'A', the method argument is the vector 'b'. The method returns the solution vector 'x'. If 'b' is a matrix, the system is solved for each column of 'b' and the return value is a matrix of the same shape as 'b'. This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don't need to use QRsolve. This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use sympy.mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve pinv_solve QRdecomposition """ Q, R = self.as_mutable().QRdecomposition() y = Q.T*b # back substitution to solve R*x = y: # We build up the result "backwards" in the vector 'x' and reverse it # only in the end. x = [] n = R.rows for j in range(n - 1, -1, -1): tmp = y[j, :] for k in range(j + 1, n): tmp -= R[j, k]*x[n - 1 - k] x.append(tmp / R[j, j]) return self._new([row._mat for row in reversed(x)])
[docs] def cross(self, b): """Return the cross product of `self` and `b` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as `self` will be returned. If `b` has the same shape as `self` then common identities for the cross product (like `a x b = - b x a`) will hold. See Also ======== dot multiply multiply_elementwise """ if not is_sequence(b): raise TypeError("`b` must be an ordered iterable or Matrix, not %s." % type(b)) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product.") else: return self._new(self.rows, self.cols, ( (self[1]*b[2] - self[2]*b[1]), (self[2]*b[0] - self[0]*b[2]), (self[0]*b[1] - self[1]*b[0])))
[docs] def dot(self, b): """Return the dot product of Matrix self and b relaxing the condition of compatible dimensions: if either the number of rows or columns are the same as the length of b then the dot product is returned. If self is a row or column vector, a scalar is returned. Otherwise, a list of results is returned (and in that case the number of columns in self must match the length of b). Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = [1, 1, 1] >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> M.dot(v) [6, 15, 24] See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError("Dimensions incorrect for dot product.") return self.dot(Matrix(b)) else: raise TypeError("`b` must be an ordered iterable or Matrix, not %s." % type(b)) if self.cols == b.rows: if b.cols != 1: self = self.T b = b.T prod = flatten((self*b).tolist()) if len(prod) == 1: return prod[0] return prod if self.cols == b.cols: return self.dot(b.T) elif self.rows == b.rows: return self.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product.")
[docs] def multiply_elementwise(self, b): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== cross dot multiply """ from sympy.matrices import matrix_multiply_elementwise return matrix_multiply_elementwise(self, b)
[docs] def values(self): """Return non-zero values of self.""" return [i for i in flatten(self.tolist()) if not i.is_zero]
[docs] def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf -- max(abs(x)) -inf -- min(abs(x)) 1 -- as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(2)# Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i)**2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord == S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord == S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i)**ord for i in vals)), S(1) / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif (ord is None or isinstance(ord, string_types) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development")
[docs] def normalized(self): """Return the normalized version of ``self``. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() out = self.applyfunc(lambda i: i / norm) return out
[docs] def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v*(self.dot(v) / v.dot(v))
[docs] def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permuteBkwd([[0, 1], [0, 2]]) Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) See Also ======== permuteFwd """ copy = self.copy() for i in range(len(perm) - 1, -1, -1): copy.row_swap(perm[i][0], perm[i][1]) return copy
[docs] def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permuteFwd([[0, 1], [0, 2]]) Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) See Also ======== permuteBkwd """ copy = self.copy() for i in range(len(perm)): copy.row_swap(perm[i][0], perm[i][1]) return copy
[docs] def exp(self): """Return the exponentiation of a square matrix.""" if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, cells = self.jordan_cells() except MatrixError: raise NotImplementedError("Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") def _jblock_exponential(b): # This function computes the matrix exponential for one single Jordan block nr = b.rows l = b[0, 0] if nr == 1: res = C.exp(l) else: from sympy import eye # extract the diagonal part d = b[0, 0]*eye(nr) #and the nilpotent part n = b-d # compute its exponential nex = eye(nr) for i in range(1, nr): nex = nex+n**i/factorial(i) # combine the two parts res = exp(b[0, 0])*nex return(res) blocks = list(map(_jblock_exponential, cells)) from sympy.matrices import diag eJ = diag(* blocks) # n = self.rows ret = P*eJ*P.inv() return type(self)(ret)
@property
[docs] def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols
@property
[docs] def is_zero(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero """ if any(i.is_zero == False for i in self): return False if any(i.is_zero == None for i in self): return None return True
[docs] def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = Dummy('x') if self.charpoly(x).args[0] == x**self.rows: return True return False
@property
[docs] def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(i))
@property
[docs] def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols))
@property
[docs] def is_hermitian(self): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ def cond(): yield self.is_square yield fuzzy_and( self[i, i].is_real for i in range(self.rows)) yield fuzzy_and( (self[i, j] - self[j, i].conjugate()).is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) return fuzzy_and(i for i in cond())
@property
[docs] def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(i - 1))
@property
[docs] def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols))
[docs] def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return any(element.has(Symbol) for element in self.values())
[docs] def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> m.is_symmetric(simplify=False) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ if not self.is_square: return False if simplify: delta = self - self.transpose() delta.simplify() return delta.equals(self.zeros(self.rows, self.cols)) else: return self == self.transpose()
[docs] def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if isinstance(simplify, FunctionType) else \ _simplify if simplify else False if not self.is_square: return False n = self.rows if simplify: for i in range(n): # diagonal if not simpfunc(self[i, i]).is_zero: return False # others for j in range(i + 1, n): diff = self[i, j] + self[j, i] if not simpfunc(diff).is_zero: return False return True else: for i in range(n): for j in range(i, n): if self[i, j] != -self[j, i]: return False return True
[docs] def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper is_diagonalizable diagonalize """ for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True
[docs] def det(self, method="bareis"): """Computes the matrix determinant using the method "method". Possible values for "method": bareis ... det_bareis berkowitz ... berkowitz_det det_LU ... det_LU_decomposition See Also ======== det_bareis berkowitz_det det_LU """ # if methods were made internal and all determinant calculations # passed through here, then these lines could be factored out of # the method routines if not self.is_square: raise NonSquareMatrixError() if not self: return S.One if method == "bareis": return self.det_bareis() elif method == "berkowitz": return self.berkowitz_det() elif method == "det_LU": return self.det_LU_decomposition() else: raise ValueError("Determinant method '%s' unrecognized" % method)
[docs] def det_bareis(self): """Compute matrix determinant using Bareis' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det berkowitz_det """ if not self.is_square: raise NonSquareMatrixError() if not self: return S.One M, n = self.copy().as_mutable(), self.rows if n == 1: det = M[0, 0] elif n == 2: det = M[0, 0]*M[1, 1] - M[0, 1]*M[1, 0] elif n == 3: det = (M[0, 0]*M[1, 1]*M[2, 2] + M[0, 1]*M[1, 2]*M[2, 0] + M[0, 2]*M[1, 0]*M[2, 1]) - \ (M[0, 2]*M[1, 1]*M[2, 0] + M[0, 0]*M[1, 2]*M[2, 1] + M[0, 1]*M[1, 0]*M[2, 2]) else: sign = 1 # track current sign in case of column swap for k in range(n - 1): # look for a pivot in the current column # and assume det == 0 if none is found if M[k, k] == 0: for i in range(k + 1, n): if M[i, k]: M.row_swap(i, k) sign *= -1 break else: return S.Zero # proceed with Bareis' fraction-free (FF) # form of Gaussian elimination algorithm for i in range(k + 1, n): for j in range(k + 1, n): D = M[k, k]*M[i, j] - M[i, k]*M[k, j] if k > 0: D /= M[k - 1, k - 1] if D.is_Atom: M[i, j] = D else: M[i, j] = cancel(D) det = sign*M[n - 1, n - 1] return det.expand()
[docs] def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareis berkowitz_det """ if not self.is_square: raise NonSquareMatrixError() if not self: return S.One M, n = self.copy(), self.rows p, prod = [], 1 l, u, p = M.LUdecomposition() if len(p) % 2: prod = -1 for k in range(n): prod = prod*u[k, k]*l[k, k] return prod.expand()
[docs] def adjugate(self, method="berkowitz"): """Returns the adjugate matrix. Adjugate matrix is the transpose of the cofactor matrix. http://en.wikipedia.org/wiki/Adjugate See Also ======== cofactorMatrix transpose berkowitz """ return self.cofactorMatrix(method).T
[docs] def inverse_LU(self, iszerofunc=_iszero): """Calculates the inverse using LU decomposition. See Also ======== inv inverse_GE inverse_ADJ """ if not self.is_square: raise NonSquareMatrixError() ok = self.rref(simplify=True)[0] if any(iszerofunc(ok[j, j]) for j in range(ok.rows)): raise ValueError("Matrix det == 0; not invertible.") return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)
[docs] def inverse_GE(self, iszerofunc=_iszero): """Calculates the inverse using Gaussian elimination. See Also ======== inv inverse_LU inverse_ADJ """ from .dense import Matrix if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows)) red = big.rref(iszerofunc=iszerofunc, simplify=True)[0] if any(iszerofunc(red[j, j]) for j in range(red.rows)): raise ValueError("Matrix det == 0; not invertible.") return self._new(red[:, big.rows:])
[docs] def inverse_ADJ(self, iszerofunc=_iszero): """Calculates the inverse using the adjugate matrix and a determinant. See Also ======== inv inverse_LU inverse_GE """ if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") d = self.berkowitz_det() zero = d.equals(0) if zero is None: # if equals() can't decide, will rref be able to? ok = self.rref(simplify=True)[0] zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows)) if zero: raise ValueError("Matrix det == 0; not invertible.") return self.adjugate() / d
[docs] def rref(self, iszerofunc=_iszero, simplify=False): """Return reduced row-echelon form of matrix and indices of pivot vars. To simplify elements before finding nonzero pivots set simplify=True (to use the default SymPy simplify function) or pass a custom simplify function. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), [0, 1]) """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify # pivot: index of next row to contain a pivot pivot, r = 0, self.as_mutable() # pivotlist: indices of pivot variables (non-free) pivotlist = [] for i in xrange(r.cols): if pivot == r.rows: break if simplify: r[pivot, i] = simpfunc(r[pivot, i]) if iszerofunc(r[pivot, i]): for k in xrange(pivot, r.rows): if simplify and k > pivot: r[k, i] = simpfunc(r[k, i]) if not iszerofunc(r[k, i]): r.row_swap(pivot, k) break else: continue scale = r[pivot, i] r.row_op(pivot, lambda x, _: x / scale) for j in xrange(r.rows): if j == pivot: continue scale = r[j, i] r.zip_row_op(j, pivot, lambda x, y: x - scale*y) pivotlist.append(i) pivot += 1 return self._new(r), pivotlist
[docs] def rank(self, iszerofunc=_iszero, simplify=False): """ Returns the rank of a matrix >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2 """ row_reduced = self.rref(iszerofunc=iszerofunc, simplify=simplify) rank = len(row_reduced[-1]) return rank
[docs] def nullspace(self, simplify=False): """Returns list of vectors (Matrix objects) that span nullspace of self """ from sympy.matrices import zeros simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify reduced, pivots = self.rref(simplify=simpfunc) basis = [] # create a set of vectors for the basis for i in range(self.cols - len(pivots)): basis.append(zeros(self.cols, 1)) # contains the variable index to which the vector corresponds basiskey, cur = [-1]*len(basis), 0 for i in range(self.cols): if i not in pivots: basiskey[cur] = i cur += 1 for i in range(self.cols): if i not in pivots: # free var, just set vector's ith place to 1 basis[basiskey.index(i)][i, 0] = 1 else: # add negative of nonpivot entry to corr vector for j in range(i + 1, self.cols): line = pivots.index(i) v = reduced[line, j] if simplify: v = simpfunc(v) if v: if j in pivots: # XXX: Is this the correct error? raise NotImplementedError( "Could not compute the nullspace of `self`.") basis[basiskey.index(j)][i, 0] = -v return [self._new(b) for b in basis]
[docs] def berkowitz(self): """The Berkowitz algorithm. Given N x N matrix with symbolic content, compute efficiently coefficients of characteristic polynomials of 'self' and all its square sub-matrices composed by removing both i-th row and column, without division in the ground domain. This method is particularly useful for computing determinant, principal minors and characteristic polynomial, when 'self' has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS. Assuming that M is a square matrix of dimension N x N and I is N x N identity matrix, then the following following definition of characteristic polynomial is begin used: charpoly(M) = det(t*I - M) As a consequence, all polynomials generated by Berkowitz algorithm are monic. >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> M = Matrix([[x, y, z], [1, 0, 0], [y, z, x]]) >>> p, q, r = M.berkowitz() >>> p # 1 x 1 M's sub-matrix (1, -x) >>> q # 2 x 2 M's sub-matrix (1, -x, -y) >>> r # 3 x 3 M's sub-matrix (1, -2*x, x**2 - y*z - y, x*y - z**2) For more information on the implemented algorithm refer to: [1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150 [2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006 See Also ======== berkowitz_det berkowitz_minors berkowitz_charpoly berkowitz_eigenvals """ from sympy.matrices import zeros if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0]*(N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A*items[i]) for i, B in enumerate(items): items[i] = (R*B)[0, 0] items = [S.One, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([S.One, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T*polys[i]) return tuple(map(tuple, polys))
[docs] def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ if not self.is_square: raise NonSquareMatrixError() if not self: return S.One poly = self.berkowitz()[-1] sign = (-1)**(len(poly) - 1) return sign*poly[-1]
[docs] def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = S.NegativeOne, [] for poly in self.berkowitz(): minors.append(sign*poly[-1]) sign = -sign return tuple(minors)
[docs] def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): """Computes characteristic polynomial minors using Berkowitz method. A PurePoly is returned so using different variables for ``x`` does not affect the comparison or the polynomials: Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y >>> A = Matrix([[1, 3], [2, 0]]) >>> A.berkowitz_charpoly(x) == A.berkowitz_charpoly(y) True Specifying ``x`` is optional; a Dummy with name ``lambda`` is used by default (which looks good when pretty-printed in unicode): >>> A.berkowitz_charpoly().as_expr() _lambda**2 - _lambda - 6 No test is done to see that ``x`` doesn't clash with an existing symbol, so using the default (``lambda``) or your own Dummy symbol is the safest option: >>> A = Matrix([[1, 2], [x, 0]]) >>> A.charpoly().as_expr() _lambda**2 - _lambda - 2*x >>> A.charpoly(x).as_expr() x**2 - 3*x See Also ======== berkowitz """ return PurePoly(list(map(simplify, self.berkowitz()[-1])), x)
charpoly = berkowitz_charpoly
[docs] def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return roots(self.berkowitz_charpoly(Dummy('x')), **flags)
[docs] def eigenvals(self, **flags): """Return eigen values using the berkowitz_eigenvals routine. Since the roots routine doesn't always work well with Floats, they will be replaced with Rationals before calling that routine. If this is not desired, set flag ``rational`` to False. """ # roots doesn't like Floats, so replace them with Rationals # unless the nsimplify flag indicates that this has already # been done, e.g. in eigenvects if flags.pop('rational', True): if any(v.has(Float) for v in self): self = self._new(self.rows, self.cols, [nsimplify(v, rational=True) for v in self]) flags.pop('simplify', None) # pop unsupported flag return self.berkowitz_eigenvals(**flags)
[docs] def eigenvects(self, **flags): """Return list of triples (eigenval, multiplicity, basis). The flag ``simplify`` has two effects: 1) if bool(simplify) is True, as_content_primitive() will be used to tidy up normalization artifacts; 2) if nullspace needs simplification to compute the basis, the simplify flag will be passed on to the nullspace routine which will interpret it there. If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. If it is desired to removed small imaginary portions during the evalf step, pass a value for the ``chop`` flag. """ from sympy.matrices import eye simplify = flags.get('simplify', True) primitive = bool(flags.get('simplify', False)) chop = flags.pop('chop', False) flags.pop('multiple', None) # remove this if it's there # roots doesn't like Floats, so replace them with Rationals float = False if any(v.has(Float) for v in self): float = True self = self._new(self.rows, self.cols, [nsimplify( v, rational=True) for v in self]) flags['rational'] = False # to tell eigenvals not to do this out, vlist = [], self.eigenvals(**flags) vlist = list(vlist.items()) vlist.sort(key=default_sort_key) flags.pop('rational', None) for r, k in vlist: tmp = self.as_mutable() - eye(self.rows)*r basis = tmp.nullspace() # whether tmp.is_symbolic() is True or False, it is possible that # the basis will come back as [] in which case simplification is # necessary. if not basis: # The nullspace routine failed, try it again with simplification basis = tmp.nullspace(simplify=simplify) if not basis: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue %s" % r) if primitive: # the relationship A*e = lambda*e will still hold if we change the # eigenvector; so if simplify is True we tidy up any normalization # artifacts with as_content_primtive (default) and remove any pure Integer # denominators. l = 1 for i, b in enumerate(basis[0]): c, p = signsimp(b).as_content_primitive() if c is not S.One: b = c*p l = ilcm(l, c.q) basis[0][i] = b if l != 1: basis[0] *= l if float: out.append((r.evalf(chop=chop), k, [ self._new(b).evalf(chop=chop) for b in basis])) else: out.append((r, k, [self._new(b) for b in basis])) return out
[docs] def singular_values(self): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> A.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ self = self.as_mutable() # Compute eigenvalues of A.H A valmultpairs = (self.H*self).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)]*v # dangerous! same k in several spots! # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals
[docs] def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues)
def __getattr__(self, attr): if attr in ('diff', 'integrate', 'limit'): def doit(*args): item_doit = lambda item: getattr(item, attr)(*args) return self.applyfunc(item_doit) return doit else: raise AttributeError( "%s has no attribute %s." % (self.__class__.__name__, attr))
[docs] def integrate(self, *args): """Integrate each element of the matrix. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self._new(self.rows, self.cols, lambda i, j: self[i, j].integrate(*args))
[docs] def limit(self, *args): """Calculate the limit of each element in the matrix. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self._new(self.rows, self.cols, lambda i, j: self[i, j].limit(*args))
[docs] def diff(self, *args): """Calculate the derivative of each element in the matrix. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ return self._new(self.rows, self.cols, lambda i, j: self[i, j].diff(*args))
[docs] def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self.T.reshape(len(self), 1)
[docs] def vech(self, diagonal=True, check_symmetry=True): """Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle. Arguments: diagonal -- include the diagonal cells of self or not check_symmetry -- checks symmetry of self but not completely reliably Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) See Also ======== vec """ from sympy.matrices import zeros c = self.cols if c != self.rows: raise ShapeError("Matrix must be square") if check_symmetry: self.simplify() if self != self.transpose(): raise ValueError("Matrix appears to be asymmetric; consider check_symmetry=False") count = 0 if diagonal: v = zeros(c*(c + 1) // 2, 1) for j in range(c): for i in range(j, c): v[count] = self[i, j] count += 1 else: v = zeros(c*(c - 1) // 2, 1) for j in range(c): for i in range(j + 1, c): v[count] = self[i, j] count += 1 return v
[docs] def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks
[docs] def diagonalize(self, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = m.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * m * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ from sympy.matrices import diag if not self.is_square: raise NonSquareMatrixError() if not self.is_diagonalizable(reals_only, False): self._diagonalize_clear_subproducts() raise MatrixError("Matrix is not diagonalizable") else: if self._eigenvects is None: self._eigenvects = self.eigenvects(simplify=True) if sort: self._eigenvects.sort(key=default_sort_key) self._eigenvects.reverse() diagvals = [] P = self._new(self.rows, 0, []) for eigenval, multiplicity, vects in self._eigenvects: for k in range(multiplicity): diagvals.append(eigenval) vec = vects[k] if normalize: vec = vec / vec.norm() P = P.col_insert(P.cols, vec) D = diag(*diagvals) self._diagonalize_clear_subproducts() return (P, D)
[docs] def is_diagonalizable(self, reals_only=False, clear_subproducts=True): """Check if matrix is diagonalizable. If reals_only==True then check that diagonalized matrix consists of the only not complex values. Some subproducts could be used further in other methods to avoid double calculations, By default (if clear_subproducts==True) they will be deleted. Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(True) False See Also ======== is_diagonal diagonalize """ if not self.is_square: return False res = False self._is_symbolic = self.is_symbolic() self._is_symmetric = self.is_symmetric() self._eigenvects = None #if self._is_symbolic: # self._diagonalize_clear_subproducts() # raise NotImplementedError("Symbolic matrices are not implemented for diagonalization yet") self._eigenvects = self.eigenvects(simplify=True) all_iscorrect = True for eigenval, multiplicity, vects in self._eigenvects: if len(vects) != multiplicity: all_iscorrect = False break elif reals_only and not eigenval.is_real: all_iscorrect = False break res = all_iscorrect if clear_subproducts: self._diagonalize_clear_subproducts() return res
def _diagonalize_clear_subproducts(self): del self._is_symbolic del self._is_symmetric del self._eigenvects def jordan_cell(self, eigenval, n): n = int(n) from sympy.matrices import MutableMatrix out = MutableMatrix.zeros(n) for i in range(n-1): out[i, i] = eigenval out[i, i+1] = 1 out[n-1, n-1] = eigenval return type(self)(out) def _jordan_block_structure(self): # To every eingenvalue may belong `i` blocks with size s(i) # and a chain of generalized eigenvectors # which will be determined by the following computations: # for every eigenvalue we will add a dictionary # containing, for all blocks, the blockssizes and the attached chain vectors # that will eventually be used to form the transformation P jordan_block_structures = {} _eigenvects = self.eigenvects() ev = self.eigenvals() if len(ev) == 0: raise AttributeError("could not compute the eigenvalues") for eigenval, multiplicity, vects in _eigenvects: l_jordan_chains={} geometrical = len(vects) if geometrical == multiplicity: # The Jordan chains have all length 1 and consist of only one vector # which is the eigenvector of course chains = [] for v in vects: chain=[v] chains.append(chain) l_jordan_chains[1] = chains jordan_block_structures[eigenval] = l_jordan_chains elif geometrical == 0: raise MatrixError("Matrix has the eigen vector with geometrical multiplicity equal zero.") else: # Up to now we know nothing about the sizes of the blocks of our Jordan matrix. # Note that knowledge of algebraic and geometrical multiplicity # will *NOT* be sufficient to determine this structure. # The blocksize `s` could be defined as the minimal `k` where # `kernel(self-lI)^k = kernel(self-lI)^(k+1)` # The extreme case would be that k = (multiplicity-geometrical+1) # but the blocks could be smaller. # Consider for instance the following matrix # [2 1 0 0] # [0 2 1 0] # [0 0 2 0] # [0 0 0 2] # which coincides with it own Jordan canonical form. # It has only one eigenvalue l=2 of (algebraic) multiplicity=4. # It has two eigenvectors, one belonging to the last row (blocksize 1) # and one being the last part of a jordan chain of length 3 (blocksize of the first block). # Note again that it is not not possible to obtain this from the algebraic and geometrical # multiplicity alone. This only gives us an upper limit for the dimension of one of # the subspaces (blocksize of according jordan block) given by # max=(multiplicity-geometrical+1) which is reached for our matrix # but not for # [2 1 0 0] # [0 2 0 0] # [0 0 2 1] # [0 0 0 2] # although multiplicity=4 and geometrical=2 are the same for this matrix. from sympy.matrices import MutableMatrix I = MutableMatrix.eye(self.rows) l = eigenval M = (self-l*I) # We will store the matrices `(self-l*I)^k` for further computations # for convenience only we store `Ms[0]=(sefl-lI)^0=I` # so the index is the same as the power for all further Ms entries # We also store the vectors that span these kernels (Ns[0] = []) # and also their dimensions `a_s` # this is mainly done for debugging since the number of blocks of a given size # can be computed from the a_s, in order to check our result which is obtained simpler # by counting the number of jordanchains for `a` given `s` # `a_0` is `dim(Kernel(Ms[0]) = dim (Kernel(I)) = 0` since `I` is regular l_jordan_chains={} chain_vectors=[] Ms = [I] Ns = [[]] a = [0] smax = 0 M_new = Ms[-1]*M Ns_new = M_new.nullspace() a_new = len(Ns_new) Ms.append(M_new) Ns.append(Ns_new) while a_new > a[-1]: # as long as the nullspaces increase compute further powers a.append(a_new) M_new = Ms[-1]*M Ns_new = M_new.nullspace() a_new=len(Ns_new) Ms.append(M_new) Ns.append(Ns_new) smax += 1 # We now have `Ms[-1]=((self-l*I)**s)=Z=0` # We now know the size of the biggest jordan block # associatet with `l` to be `s` # now let us proceed with the computation of the associate part of the transformation matrix `P` # We already know the kernel (=nullspace) `K_l` of (self-lI) which consists of the # eigenvectors belonging to eigenvalue `l` # The dimension of this space is the geometric multiplicity of eigenvalue `l`. # For every eigenvector ev out of `K_l`, there exists a subspace that is # spanned by the jordan chain of ev. The dimension of this subspace is # represented by the length s of the jordan block. # The chain itself is given by `{e_0,..,e_s-1}` where: # `e_k+1 =(self-lI)e_k (*)` # and # `e_s-1=ev` # So it would be possible to start with the already known `ev` and work backwards until one # reaches `e_0`. Unfortunately this can not be done by simply solving system (*) since its matrix # is singular (by definition of the eigenspaces). # This approach would force us a choose in every step the degree of freedom undetermined # by (*). This is difficult to implement with computer algebra systems and also quite unefficient. # We therefore reformulate the problem in terms of nullspaces. # To do so we start from the other end and choose `e0`'s out of # `E=Kernel(self-lI)^s / Kernel(self-lI)^(s-1)` # Note that `Kernel(self-lI)^s = Kernel(Z) = V` (the whole vector space). # So in the first step `s=smax` this restriction turns out to actually restrict nothing at all # and the only remaining condition is to choose vectors in `Kernel(self-lI)^(s-1)`. # Subsequently we compute `e_1=(self-lI)e_0`, `e_2=(self-lI)*e_1` and so on. # The subspace `E` can have a dimension larger than one. # That means that we have more than one Jordanblocks of size `s` for the eigenvalue `l` # and as many jordanchains (This is the case in the second example). # In this case we start as many jordan chains and have as many blocks of size s in the jcf. # We now have all the jordanblocks of size `s` but there might be others attached to the same # eigenvalue that are smaller. # So we will do the same procedure also for `s-1` and so on until 1 the lowest possible order # where the jordanchain is of lenght 1 and just represented by the eigenvector. for s in reversed(xrange(1, smax+1)): S = Ms[s] # We want the vectors in `Kernel((self-lI)^s)` (**), # but without those in `Kernel(self-lI)^s-1` so we will add these as additional equations # to the sytem formed by `S` (`S` will no longer be quadratic but this does not harm # since S is rank deficiant). exclude_vectors = Ns[s-1] for k in range(0, a[s-1]): S = S.col_join((exclude_vectors[k]).transpose()) # We also want to exclude the vectors in the chains for the bigger blogs # that we have already computed (if there are any). # (That is why we start wiht the biggest s). ######## Implementation remark: ######## # Doing so for *ALL* already computed chain vectors # we actually exclude some vectors twice because they are already excluded # by the condition (**). # This happens if there are more than one blocks attached to the same eigenvalue *AND* # the current blocksize is smaller than the block whose chain vectors we exclude. # If the current block has size `s_i` and the next bigger block has size `s_i-1` then # the first `s_i-s_i-1` chainvectors of the bigger block are allready excluded by (**). # The unnecassary adding of these equations could be avoided if the algorithm would # take into account the lengths of the already computed chains which are already stored # and add only the last `s` items. # However the following loop would be a good deal more nested to do so. # Since adding a linear dependent equation does not change the result, # it can harm only in terms of efficiency. # So to be sure i let it there for the moment # A more elegant alternative approach might be to drop condition (**) altogether # because it is added implicitly by excluding the chainvectors but the original author # of this code was not sure if this is correct in all cases. l = len(chain_vectors) if l > 0: for k in range(0, l): old = chain_vectors[k].transpose() S = S.col_join(old) e0s = S.nullspace() # Determine the number of chain leaders which equals the number of blocks with that size. n_e0 = len(e0s) s_chains = [] # s_cells=[] for i in range(0, n_e0): chain=[e0s[i]] for k in range(1, s): v = M*chain[k-1] chain.append(v) # We want the chain leader appear as the last of the block. chain.reverse() chain_vectors += chain s_chains.append(chain) l_jordan_chains[s] = s_chains jordan_block_structures[eigenval] = l_jordan_chains return jordan_block_structures
[docs] def jordan_form(self, calc_transformation=True): r"""Return Jordan form J of current matrix. Also the transformation P such that `J = P^{-1} \cdot M \cdot P` and the jordan blocks forming J will be calculated. Examples ======== >>> from sympy import Matrix >>> m = Matrix([ ... [ 6, 5, -2, -3], ... [-3, -1, 3, 3], ... [ 2, 1, -2, -3], ... [-1, 1, 5, 5]]) >>> P, J = m.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_cells """ P, Jcells = self.jordan_cells() from sympy.matrices import diag J = diag(*Jcells) return P, type(self)(J)
[docs] def jordan_cells(self, calc_transformation=True): r"""Return a list of Jordan cells of current matrix. This list shape Jordan matrix J. If calc_transformation is specified as False, then transformation P such that `J = P^{-1} \cdot M \cdot P` will not be calculated. Notes ===== Calculation of transformation P is not implemented yet. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 4, [ ... 6, 5, -2, -3, ... -3, -1, 3, 3, ... 2, 1, -2, -3, ... -1, 1, 5, 5]) >>> P, Jcells = m.jordan_cells() >>> Jcells[0] Matrix([ [2, 1], [0, 2]]) >>> Jcells[1] Matrix([ [2, 1], [0, 2]]) See Also ======== jordan_form """ n = self.rows Jcells = [] Pcols_new = [] jordan_block_structures = self._jordan_block_structure() from sympy.matrices import MutableMatrix # Order according to default_sort_key, this makes sure the order is the same as in .diagonalize(): for eigenval in (sorted(list(jordan_block_structures.keys()), key=default_sort_key)): l_jordan_chains = jordan_block_structures[eigenval] for s in reversed(sorted((l_jordan_chains).keys())): # Start with the biggest block s_chains = l_jordan_chains[s] block = self.jordan_cell(eigenval, s) number_of_s_chains=len(s_chains) for i in range(0, number_of_s_chains): Jcells.append(type(self)(block)) chain_vectors = s_chains[i] lc = len(chain_vectors) assert lc == s for j in range(0, lc): generalized_eigen_vector = chain_vectors[j] Pcols_new.append(generalized_eigen_vector) P = MutableMatrix.zeros(n) for j in range(0, n): P[:, j] = Pcols_new[j] return type(self)(P), Jcells
def _jordan_split(self, algebraical, geometrical): """Return a list of integers with sum equal to 'algebraical' and length equal to 'geometrical'""" n1 = algebraical // geometrical res = [n1]*geometrical res[len(res) - 1] += algebraical % geometrical assert sum(res) == algebraical return res
[docs] def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True """ return any(a.has(*patterns) for a in self._mat)
[docs] def dual(self): """Returns the dual of a matrix, which is: `(1/2)*levicivita(i, j, k, l)*M(k, l)` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k)*M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b)*M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work
@classmethod
[docs] def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ return reduce(cls.row_join, args)
@classmethod
[docs] def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ return reduce(cls.col_join, args)
[docs] def row_join(self, rhs): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ if self.rows != rhs.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") from sympy.matrices import MutableMatrix newmat = MutableMatrix.zeros(self.rows, self.cols + rhs.cols) newmat[:, :self.cols] = self newmat[:, self.cols:] = rhs return type(self)(newmat)
[docs] def col_join(self, bott): """Concatenates two matrices along self's last and bott's first row Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ if self.cols != bott.cols: raise ShapeError( "`self` and `bott` must have the same number of columns.") from sympy.matrices import MutableMatrix newmat = MutableMatrix.zeros(self.rows + bott.rows, self.cols) newmat[:self.rows, :] = self newmat[self.rows:, :] = bott return type(self)(newmat)
[docs] def row_insert(self, pos, mti): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ if pos == 0: return mti.col_join(self) elif pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != mti.cols: raise ShapeError( "`self` and `mti` must have the same number of columns.") newmat = self.zeros(self.rows + mti.rows, self.cols) i, j = pos, pos + mti.rows newmat[:i, :] = self[:i, :] newmat[i: j, :] = mti newmat[j:, :] = self[i:, :] return newmat
[docs] def col_insert(self, pos, mti): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ if pos == 0: return mti.row_join(self) elif pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != mti.rows: raise ShapeError("self and mti must have the same number of rows.") from sympy.matrices import MutableMatrix newmat = MutableMatrix.zeros(self.rows, self.cols + mti.cols) i, j = pos, pos + mti.cols newmat[:, :i] = self[:, :i] newmat[:, i:j] = mti newmat[:, j:] = self[:, i:] return type(self)(newmat)
[docs] def replace(self, F, G, map=False): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ M = self[:, :] return M.applyfunc(lambda x: x.replace(F, G, map))
[docs] def pinv(self): """Calculate the Moore-Penrose pseudoinverse of the matrix. The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse. Examples ======== >>> from sympy import Matrix >>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv() Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]]) See Also ======== inv pinv_solve References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse """ A = self AH = self.H # Trivial case: pseudoinverse of all-zero matrix is its transpose. if A.is_zero: return AH try: if self.rows >= self.cols: return (AH * A).inv() * AH else: return AH * (A * AH).inv() except ValueError: # Matrix is not full rank, so A*AH cannot be inverted. raise NotImplementedError('Rank-deficient matrices are not yet ' 'supported.')
[docs] def pinv_solve(self, B, arbitrary_matrix=None): """Solve Ax = B using the Moore-Penrose pseudoinverse. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. arbitrary_matrix : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x, with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of ``wn_m`` will be used, with n and m being row and column position of each symbol. Returns ======= x : Matrix The matrix that will satisfy Ax = B. Will have as many rows as matrix A has columns, and as many columns as matrix B. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> B = Matrix([7, 8]) >>> A.pinv_solve(B) Matrix([ [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18], [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9], [ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]]) >>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0])) Matrix([ [-55/18], [ 1/9], [ 59/18]]) See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv Notes ===== This may return either exact solutions or least squares solutions. To determine which, check ``A * A.pinv() * B == B``. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side. References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system """ from sympy.matrices import eye A = self A_pinv = self.pinv() if arbitrary_matrix is None: rows, cols = A.cols, B.cols w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy) arbitrary_matrix = self.__class__(cols, rows, w).T return A_pinv * B + (eye(A.cols) - A_pinv*A) * arbitrary_matrix
[docs]def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.matrices import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableMatrix'> """ try: if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ except Exception: pass try: import numpy if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ except Exception: pass raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
[docs]def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: try: j = j.__index__() except AttributeError: raise IndexError("Invalid index a[%r]" % (j, )) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j, )) return int(j)