Source code for sympy.utilities.codegen

"""
module for generating C, C++, Fortran77, Fortran90 and Octave/Matlab routines
that evaluate sympy expressions.  This module is work in progress.  Only the
milestones with a '+' character in the list below have been completed.

--- How is sympy.utilities.codegen different from sympy.printing.ccode? ---

We considered the idea to extend the printing routines for sympy functions in
such a way that it prints complete compilable code, but this leads to a few
unsurmountable issues that can only be tackled with dedicated code generator:

- For C, one needs both a code and a header file, while the printing routines
  generate just one string. This code generator can be extended to support
  .pyf files for f2py.

- SymPy functions are not concerned with programming-technical issues, such
  as input, output and input-output arguments. Other examples are contiguous
  or non-contiguous arrays, including headers of other libraries such as gsl
  or others.

- It is highly interesting to evaluate several sympy functions in one C
  routine, eventually sharing common intermediate results with the help
  of the cse routine. This is more than just printing.

- From the programming perspective, expressions with constants should be
  evaluated in the code generator as much as possible. This is different
  for printing.

--- Basic assumptions ---

* A generic Routine data structure describes the routine that must be
  translated into C/Fortran/... code. This data structure covers all
  features present in one or more of the supported languages.

* Descendants from the CodeGen class transform multiple Routine instances
  into compilable code. Each derived class translates into a specific
  language.

* In many cases, one wants a simple workflow. The friendly functions in the
  last part are a simple api on top of the Routine/CodeGen stuff. They are
  easier to use, but are less powerful.

--- Milestones ---

+ First working version with scalar input arguments, generating C code,
  tests
+ Friendly functions that are easier to use than the rigorous
  Routine/CodeGen workflow.
+ Integer and Real numbers as input and output
+ Output arguments
+ InputOutput arguments
+ Sort input/output arguments properly
+ Contiguous array arguments (numpy matrices)
+ Also generate .pyf code for f2py (in autowrap module)
+ Isolate constants and evaluate them beforehand in double precision
+ Fortran 90
+ Octave/Matlab

- Common Subexpression Elimination
- User defined comments in the generated code
- Optional extra include lines for libraries/objects that can eval special
  functions
- Test other C compilers and libraries: gcc, tcc, libtcc, gcc+gsl, ...
- Contiguous array arguments (sympy matrices)
- Non-contiguous array arguments (sympy matrices)
- ccode must raise an error when it encounters something that can not be
  translated into c. ccode(integrate(sin(x)/x, x)) does not make sense.
- Complex numbers as input and output
- A default complex datatype
- Include extra information in the header: date, user, hostname, sha1
  hash, ...
- Fortran 77
- C++
- Python
- ...

"""

from __future__ import print_function, division

import os
import textwrap

from sympy import __version__ as sympy_version
from sympy.core import Symbol, S, Expr, Tuple, Equality, Function
from sympy.core.compatibility import is_sequence, StringIO, string_types
from sympy.printing.codeprinter import AssignmentError
from sympy.printing.ccode import ccode, CCodePrinter
from sympy.printing.fcode import fcode, FCodePrinter
from sympy.printing.octave import octave_code, OctaveCodePrinter
from sympy.tensor import Idx, Indexed, IndexedBase
from sympy.matrices import (MatrixSymbol, ImmutableMatrix, MatrixBase,
                            MatrixExpr, MatrixSlice)


__all__ = [
    # description of routines
    "Routine", "DataType", "default_datatypes", "get_default_datatype",
    "Argument", "InputArgument", "Result",
    # routines -> code
    "CodeGen", "CCodeGen", "FCodeGen", "OctaveCodeGen",
    # friendly functions
    "codegen", "make_routine",
]


#
# Description of routines
#


[docs]class Routine(object): """Generic description of evaluation routine for set of expressions. A CodeGen class can translate instances of this class into code in a particular language. The routine specification covers all the features present in these languages. The CodeGen part must raise an exception when certain features are not present in the target language. For example, multiple return values are possible in Python, but not in C or Fortran. Another example: Fortran and Python support complex numbers, while C does not. """ def __init__(self, name, arguments, results, local_vars): """Initialize a Routine instance. Parameters ========== name : string Name of the routine. arguments : list of Arguments These are things that appear in arguments of a routine, often appearing on the right-hand side of a function call. These are commonly InputArguments but in some languages, they can also be OutputArguments or InOutArguments (e.g., pass-by-reference in C code). results : list of Results These are the return values of the routine, often appearing on the left-hand side of a function call. The difference between Results and OutputArguments and when you should use each is language-specific. local_vars : list of Symbols These are used internally by the routine. """ # extract all input symbols and all symbols appearing in an expression input_symbols = set([]) symbols = set([]) for arg in arguments: if isinstance(arg, OutputArgument): symbols.update(arg.expr.free_symbols) elif isinstance(arg, InputArgument): input_symbols.add(arg.name) elif isinstance(arg, InOutArgument): input_symbols.add(arg.name) symbols.update(arg.expr.free_symbols) else: raise ValueError("Unknown Routine argument: %s" % arg) for r in results: if not isinstance(r, Result): raise ValueError("Unknown Routine result: %s" % r) symbols.update(r.expr.free_symbols) # Check that all symbols in the expressions are covered by # InputArguments/InOutArguments---subset because user could # specify additional (unused) InputArguments or local_vars. notcovered = symbols.difference(input_symbols.union(local_vars)) if notcovered != set([]): raise ValueError("Symbols needed for output are not in input " + ", ".join([str(x) for x in notcovered])) self.name = name self.arguments = arguments self.results = results self.local_vars = local_vars @property
[docs] def variables(self): """Returns a set of all variables possibly used in the routine. For routines with unnamed return values, the dummies that may or may not be used will be included in the set. """ v = set(self.local_vars) for arg in self.arguments: v.add(arg.name) for res in self.results: v.add(res.result_var) return v
@property
[docs] def result_variables(self): """Returns a list of OutputArgument, InOutArgument and Result. If return values are present, they are at the end ot the list. """ args = [arg for arg in self.arguments if isinstance( arg, (OutputArgument, InOutArgument))] args.extend(self.results) return args
[docs]class DataType(object): """Holds strings for a certain datatype in different languages.""" def __init__(self, cname, fname, pyname, octname): self.cname = cname self.fname = fname self.pyname = pyname self.octname = octname
default_datatypes = { "int": DataType("int", "INTEGER*4", "int", ""), "float": DataType("double", "REAL*8", "float", "") }
[docs]def get_default_datatype(expr): """Derives an appropriate datatype based on the expression.""" if expr.is_integer: return default_datatypes["int"] elif isinstance(expr, MatrixBase): for element in expr: if not element.is_integer: return default_datatypes["float"] return default_datatypes["int"] else: return default_datatypes["float"]
class Variable(object): """Represents a typed variable.""" def __init__(self, name, datatype=None, dimensions=None, precision=None): """Return a new variable. Parameters ========== name : Symbol or MatrixSymbol datatype : optional When not given, the data type will be guessed based on the assumptions on the symbol argument. dimension : sequence containing tupes, optional If present, the argument is interpreted as an array, where this sequence of tuples specifies (lower, upper) bounds for each index of the array. precision : int, optional Controls the precision of floating point constants. """ if not isinstance(name, (Symbol, MatrixSymbol)): raise TypeError("The first argument must be a sympy symbol.") if datatype is None: datatype = get_default_datatype(name) elif not isinstance(datatype, DataType): raise TypeError("The (optional) `datatype' argument must be an" "instance of the DataType class.") if dimensions and not isinstance(dimensions, (tuple, list)): raise TypeError( "The dimension argument must be a sequence of tuples") self._name = name self._datatype = { 'C': datatype.cname, 'FORTRAN': datatype.fname, 'OCTAVE': datatype.octname, 'PYTHON': datatype.pyname } self.dimensions = dimensions self.precision = precision @property def name(self): return self._name def get_datatype(self, language): """Returns the datatype string for the requested langage. Examples ======== >>> from sympy import Symbol >>> from sympy.utilities.codegen import Variable >>> x = Variable(Symbol('x')) >>> x.get_datatype('c') 'double' >>> x.get_datatype('fortran') 'REAL*8' """ try: return self._datatype[language.upper()] except KeyError: raise CodeGenError("Has datatypes for languages: %s" % ", ".join(self._datatype))
[docs]class Argument(Variable): """An abstract Argument data structure: a name and a data type. This structure is refined in the descendants below. """ pass
class InputArgument(Argument): pass class ResultBase(object): """Base class for all "outgoing" information from a routine. Objects of this class stores a sympy expression, and a sympy object representing a result variable that will be used in the generated code only if necessary. """ def __init__(self, expr, result_var): self.expr = expr self.result_var = result_var class OutputArgument(Argument, ResultBase): """OutputArgument are always initialized in the routine.""" def __init__(self, name, result_var, expr, datatype=None, dimensions=None, precision=None): """Return a new variable. Parameters ========== name : Symbol, MatrixSymbol The name of this variable. When used for code generation, this might appear, for example, in the prototype of function in the argument list. result_var : Symbol, Indexed Something that can be used to assign a value to this variable. Typically the same as `name` but for Indexed this should be e.g., "y[i]" whereas `name` should be the Symbol "y". expr : object The expression that should be output, typically a SymPy expression. datatype : optional When not given, the data type will be guessed based on the assumptions on the symbol argument. dimension : sequence containing tupes, optional If present, the argument is interpreted as an array, where this sequence of tuples specifies (lower, upper) bounds for each index of the array. precision : int, optional Controls the precision of floating point constants. """ Argument.__init__(self, name, datatype, dimensions, precision) ResultBase.__init__(self, expr, result_var) class InOutArgument(Argument, ResultBase): """InOutArgument are never initialized in the routine.""" def __init__(self, name, result_var, expr, datatype=None, dimensions=None, precision=None): if not datatype: datatype = get_default_datatype(expr) Argument.__init__(self, name, datatype, dimensions, precision) ResultBase.__init__(self, expr, result_var) __init__.__doc__ = OutputArgument.__init__.__doc__
[docs]class Result(Variable, ResultBase): """An expression for a return value. The name result is used to avoid conflicts with the reserved word "return" in the python language. It is also shorter than ReturnValue. These may or may not need a name in the destination (e.g., "return(x*y)" might return a value without ever naming it). """ def __init__(self, expr, name=None, result_var=None, datatype=None, dimensions=None, precision=None): """Initialize a return value. Parameters ========== expr : SymPy expression name : Symbol, MatrixSymbol, optional The name of this return variable. When used for code generation, this might appear, for example, in the prototype of function in a list of return values. A dummy name is generated if omitted. result_var : Symbol, Indexed, optional Something that can be used to assign a value to this variable. Typically the same as `name` but for Indexed this should be e.g., "y[i]" whereas `name` should be the Symbol "y". Defaults to `name` if omitted. datatype : optional When not given, the data type will be guessed based on the assumptions on the symbol argument. dimension : sequence containing tupes, optional If present, this variable is interpreted as an array, where this sequence of tuples specifies (lower, upper) bounds for each index of the array. precision : int, optional Controls the precision of floating point constants. """ if not isinstance(expr, (Expr, MatrixBase, MatrixExpr)): raise TypeError("The first argument must be a sympy expression.") if name is None: name = 'result_%d' % abs(hash(expr)) if isinstance(name, string_types): if isinstance(expr, (MatrixBase, MatrixExpr)): name = MatrixSymbol(name, *expr.shape) else: name = Symbol(name) if result_var is None: result_var = name Variable.__init__(self, name, datatype=datatype, dimensions=dimensions, precision=precision) ResultBase.__init__(self, expr, result_var) # # Transformation of routine objects into code #
[docs]class CodeGen(object): """Abstract class for the code generators.""" def __init__(self, project="project"): """Initialize a code generator. Derived classes will offer more options that affect the generated code. """ self.project = project
[docs] def routine(self, name, expr, argument_sequence): """Creates an Routine object that is appropriate for this language. This implementation is appropriate for at least C/Fortran. Subclasses can override this if necessary. Here, we assume at most one return value (the l-value) which must be scalar. Additional outputs are OutputArguments (e.g., pointers on right-hand-side or pass-by-reference). Matrices are always returned via OutputArguments. If ``argument_sequence`` is None, arguments will be ordered alphabetically, but with all InputArguments first, and then OutputArgument and InOutArguments. """ if is_sequence(expr) and not isinstance(expr, (MatrixBase, MatrixExpr)): if not expr: raise ValueError("No expression given") expressions = Tuple(*expr) else: expressions = Tuple(expr) # local variables local_vars = set([i.label for i in expressions.atoms(Idx)]) # symbols that should be arguments symbols = expressions.free_symbols - local_vars # Decide whether to use output argument or return value return_val = [] output_args = [] for expr in expressions: if isinstance(expr, Equality): out_arg = expr.lhs expr = expr.rhs if isinstance(out_arg, Indexed): dims = tuple([ (S.Zero, dim - 1) for dim in out_arg.shape]) symbol = out_arg.base.label elif isinstance(out_arg, Symbol): dims = [] symbol = out_arg elif isinstance(out_arg, MatrixSymbol): dims = tuple([ (S.Zero, dim - 1) for dim in out_arg.shape]) symbol = out_arg else: raise CodeGenError("Only Indexed, Symbol, or MatrixSymbol " "can define output arguments.") if expr.has(symbol): output_args.append( InOutArgument(symbol, out_arg, expr, dimensions=dims)) else: output_args.append( OutputArgument(symbol, out_arg, expr, dimensions=dims)) # avoid duplicate arguments symbols.remove(symbol) elif isinstance(expr, (ImmutableMatrix, MatrixSlice)): # Create a "dummy" MatrixSymbol to use as the Output arg out_arg = MatrixSymbol('out_%s' % abs(hash(expr)), *expr.shape) dims = tuple([(S.Zero, dim - 1) for dim in out_arg.shape]) output_args.append( OutputArgument(out_arg, out_arg, expr, dimensions=dims)) else: return_val.append(Result(expr)) arg_list = [] # setup input argument list array_symbols = {} for array in expressions.atoms(Indexed): array_symbols[array.base.label] = array for array in expressions.atoms(MatrixSymbol): array_symbols[array] = array for symbol in sorted(symbols, key=str): if symbol in array_symbols: dims = [] array = array_symbols[symbol] for dim in array.shape: dims.append((S.Zero, dim - 1)) metadata = {'dimensions': dims} else: metadata = {} arg_list.append(InputArgument(symbol, **metadata)) output_args.sort(key=lambda x: str(x.name)) arg_list.extend(output_args) if argument_sequence is not None: # if the user has supplied IndexedBase instances, we'll accept that new_sequence = [] for arg in argument_sequence: if isinstance(arg, IndexedBase): new_sequence.append(arg.label) else: new_sequence.append(arg) argument_sequence = new_sequence missing = [x for x in arg_list if x.name not in argument_sequence] if missing: raise CodeGenArgumentListError("Argument list didn't specify: " ", ".join([str(m.name) for m in missing]), missing) # create redundant arguments to produce the requested sequence name_arg_dict = dict([(x.name, x) for x in arg_list]) new_args = [] for symbol in argument_sequence: try: new_args.append(name_arg_dict[symbol]) except KeyError: new_args.append(InputArgument(symbol)) arg_list = new_args return Routine(name, arg_list, return_val, local_vars)
[docs] def write(self, routines, prefix, to_files=False, header=True, empty=True): """Writes all the source code files for the given routines. The generated source is returned as a list of (filename, contents) tuples, or is written to files (see below). Each filename consists of the given prefix, appended with an appropriate extension. Parameters ========== routines : list A list of Routine instances to be written prefix : string The prefix for the output files to_files : bool, optional When True, the output is written to files. Otherwise, a list of (filename, contents) tuples is returned. [default: False] header : bool, optional When True, a header comment is included on top of each source file. [default: True] empty : bool, optional When True, empty lines are included to structure the source files. [default: True] """ if to_files: for dump_fn in self.dump_fns: filename = "%s.%s" % (prefix, dump_fn.extension) with open(filename, "w") as f: dump_fn(self, routines, f, prefix, header, empty) else: result = [] for dump_fn in self.dump_fns: filename = "%s.%s" % (prefix, dump_fn.extension) contents = StringIO() dump_fn(self, routines, contents, prefix, header, empty) result.append((filename, contents.getvalue())) return result
[docs] def dump_code(self, routines, f, prefix, header=True, empty=True): """Write the code by calling language specific methods. The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate. Parameters ========== routines : list A list of Routine instances. f : file-like Where to write the file. prefix : string The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used. header : bool, optional When True, a header comment is included on top of each source file. [default : True] empty : bool, optional When True, empty lines are included to structure the source files. [default : True] """ code_lines = self._preprocessor_statements(prefix) for routine in routines: if empty: code_lines.append("\n") code_lines.extend(self._get_routine_opening(routine)) code_lines.extend(self._declare_arguments(routine)) code_lines.extend(self._declare_locals(routine)) if empty: code_lines.append("\n") code_lines.extend(self._call_printer(routine)) if empty: code_lines.append("\n") code_lines.extend(self._get_routine_ending(routine)) code_lines = self._indent_code(''.join(code_lines)) if header: code_lines = ''.join(self._get_header() + [code_lines]) if code_lines: f.write(code_lines)
class CodeGenError(Exception): pass class CodeGenArgumentListError(Exception): @property def missing_args(self): return self.args[1] header_comment = """Code generated with sympy %(version)s See http://www.sympy.org/ for more information. This file is part of '%(project)s' """
[docs]class CCodeGen(CodeGen): """Generator for C code. The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.c and <prefix>.h respectively. """ code_extension = "c" interface_extension = "h" def _get_header(self): """Writes a common header for the generated files.""" code_lines = [] code_lines.append("/" + "*"*78 + '\n') tmp = header_comment % {"version": sympy_version, "project": self.project} for line in tmp.splitlines(): code_lines.append(" *%s*\n" % line.center(76)) code_lines.append(" " + "*"*78 + "/\n") return code_lines
[docs] def get_prototype(self, routine): """Returns a string for the function prototype of the routine. If the routine has multiple result objects, an CodeGenError is raised. See: http://en.wikipedia.org/wiki/Function_prototype """ if len(routine.results) > 1: raise CodeGenError("C only supports a single or no return value.") elif len(routine.results) == 1: ctype = routine.results[0].get_datatype('C') else: ctype = "void" type_args = [] for arg in routine.arguments: name = ccode(arg.name) if arg.dimensions or isinstance(arg, ResultBase): type_args.append((arg.get_datatype('C'), "*%s" % name)) else: type_args.append((arg.get_datatype('C'), name)) arguments = ", ".join([ "%s %s" % t for t in type_args]) return "%s %s(%s)" % (ctype, routine.name, arguments)
def _preprocessor_statements(self, prefix): code_lines = [] code_lines.append("#include \"%s.h\"\n" % os.path.basename(prefix)) code_lines.append("#include <math.h>\n") return code_lines def _get_routine_opening(self, routine): prototype = self.get_prototype(routine) return ["%s {\n" % prototype] def _declare_arguments(self, routine): # arguments are declared in prototype return [] def _declare_locals(self, routine): # loop variables are declared in loop statement return [] def _call_printer(self, routine): code_lines = [] # Compose a list of symbols to be dereferenced in the function # body. These are the arguments that were passed by a reference # pointer, excluding arrays. dereference = [] for arg in routine.arguments: if isinstance(arg, ResultBase) and not arg.dimensions: dereference.append(arg.name) return_val = None for result in routine.result_variables: if isinstance(result, Result): assign_to = routine.name + "_result" t = result.get_datatype('c') code_lines.append("{0} {1};\n".format(t, str(assign_to))) return_val = assign_to else: assign_to = result.result_var try: constants, not_c, c_expr = ccode(result.expr, human=False, assign_to=assign_to, dereference=dereference) except AssignmentError: assign_to = result.result_var code_lines.append( "%s %s;\n" % (result.get_datatype('c'), str(assign_to))) constants, not_c, c_expr = ccode(result.expr, human=False, assign_to=assign_to, dereference=dereference) for name, value in sorted(constants, key=str): code_lines.append("double const %s = %s;\n" % (name, value)) code_lines.append("%s\n" % c_expr) if return_val: code_lines.append(" return %s;\n" % return_val) return code_lines def _indent_code(self, codelines): p = CCodePrinter() return p.indent_code(codelines) def _get_routine_ending(self, routine): return ["}\n"]
[docs] def dump_c(self, routines, f, prefix, header=True, empty=True): self.dump_code(routines, f, prefix, header, empty)
dump_c.extension = code_extension dump_c.__doc__ = CodeGen.dump_code.__doc__
[docs] def dump_h(self, routines, f, prefix, header=True, empty=True): """Writes the C header file. This file contains all the function declarations. Parameters ========== routines : list A list of Routine instances. f : file-like Where to write the file. prefix : string The filename prefix, used to construct the include guards. Only the basename of the prefix is used. header : bool, optional When True, a header comment is included on top of each source file. [default : True] empty : bool, optional When True, empty lines are included to structure the source files. [default : True] """ if header: print(''.join(self._get_header()), file=f) guard_name = "%s__%s__H" % (self.project.replace( " ", "_").upper(), prefix.replace("/", "_").upper()) # include guards if empty: print(file=f) print("#ifndef %s" % guard_name, file=f) print("#define %s" % guard_name, file=f) if empty: print(file=f) # declaration of the function prototypes for routine in routines: prototype = self.get_prototype(routine) print("%s;" % prototype, file=f) # end if include guards if empty: print(file=f) print("#endif", file=f) if empty: print(file=f)
dump_h.extension = interface_extension # This list of dump functions is used by CodeGen.write to know which dump # functions it has to call. dump_fns = [dump_c, dump_h]
[docs]class FCodeGen(CodeGen): """Generator for Fortran 95 code The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.f90 and <prefix>.h respectively. """ code_extension = "f90" interface_extension = "h" def __init__(self, project='project'): CodeGen.__init__(self, project) def _get_symbol(self, s): """Returns the symbol as fcode prints it.""" return fcode(s).strip() def _get_header(self): """Writes a common header for the generated files.""" code_lines = [] code_lines.append("!" + "*"*78 + '\n') tmp = header_comment % {"version": sympy_version, "project": self.project} for line in tmp.splitlines(): code_lines.append("!*%s*\n" % line.center(76)) code_lines.append("!" + "*"*78 + '\n') return code_lines def _preprocessor_statements(self, prefix): return [] def _get_routine_opening(self, routine): """Returns the opening statements of the fortran routine.""" code_list = [] if len(routine.results) > 1: raise CodeGenError( "Fortran only supports a single or no return value.") elif len(routine.results) == 1: result = routine.results[0] code_list.append(result.get_datatype('fortran')) code_list.append("function") else: code_list.append("subroutine") args = ", ".join("%s" % self._get_symbol(arg.name) for arg in routine.arguments) call_sig = "{0}({1})\n".format(routine.name, args) # Fortran 95 requires all lines be less than 132 characters, so wrap # this line before appending. call_sig = ' &\n'.join(textwrap.wrap(call_sig, width=60, break_long_words=False)) + '\n' code_list.append(call_sig) code_list = [' '.join(code_list)] code_list.append('implicit none\n') return code_list def _declare_arguments(self, routine): # argument type declarations code_list = [] array_list = [] scalar_list = [] for arg in routine.arguments: if isinstance(arg, InputArgument): typeinfo = "%s, intent(in)" % arg.get_datatype('fortran') elif isinstance(arg, InOutArgument): typeinfo = "%s, intent(inout)" % arg.get_datatype('fortran') elif isinstance(arg, OutputArgument): typeinfo = "%s, intent(out)" % arg.get_datatype('fortran') else: raise CodeGenError("Unkown Argument type: %s" % type(arg)) fprint = self._get_symbol if arg.dimensions: # fortran arrays start at 1 dimstr = ", ".join(["%s:%s" % ( fprint(dim[0] + 1), fprint(dim[1] + 1)) for dim in arg.dimensions]) typeinfo += ", dimension(%s)" % dimstr array_list.append("%s :: %s\n" % (typeinfo, fprint(arg.name))) else: scalar_list.append("%s :: %s\n" % (typeinfo, fprint(arg.name))) # scalars first, because they can be used in array declarations code_list.extend(scalar_list) code_list.extend(array_list) return code_list def _declare_locals(self, routine): code_list = [] for var in sorted(routine.local_vars, key=str): typeinfo = get_default_datatype(var) code_list.append("%s :: %s\n" % ( typeinfo.fname, self._get_symbol(var))) return code_list def _get_routine_ending(self, routine): """Returns the closing statements of the fortran routine.""" if len(routine.results) == 1: return ["end function\n"] else: return ["end subroutine\n"]
[docs] def get_interface(self, routine): """Returns a string for the function interface. The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is raised. See: http://en.wikipedia.org/wiki/Function_prototype """ prototype = [ "interface\n" ] prototype.extend(self._get_routine_opening(routine)) prototype.extend(self._declare_arguments(routine)) prototype.extend(self._get_routine_ending(routine)) prototype.append("end interface\n") return "".join(prototype)
def _call_printer(self, routine): declarations = [] code_lines = [] for result in routine.result_variables: if isinstance(result, Result): assign_to = routine.name elif isinstance(result, (OutputArgument, InOutArgument)): assign_to = result.result_var constants, not_fortran, f_expr = fcode(result.expr, assign_to=assign_to, source_format='free', human=False) for obj, v in sorted(constants, key=str): t = get_default_datatype(obj) declarations.append( "%s, parameter :: %s = %s\n" % (t.fname, obj, v)) for obj in sorted(not_fortran, key=str): t = get_default_datatype(obj) if isinstance(obj, Function): name = obj.func else: name = obj declarations.append("%s :: %s\n" % (t.fname, name)) code_lines.append("%s\n" % f_expr) return declarations + code_lines def _indent_code(self, codelines): p = FCodePrinter({'source_format': 'free', 'human': False}) return p.indent_code(codelines)
[docs] def dump_f95(self, routines, f, prefix, header=True, empty=True): # check that symbols are unique with ignorecase for r in routines: lowercase = set([str(x).lower() for x in r.variables]) orig_case = set([str(x) for x in r.variables]) if len(lowercase) < len(orig_case): raise CodeGenError("Fortran ignores case. Got symbols: %s" % (", ".join([str(var) for var in r.variables]))) self.dump_code(routines, f, prefix, header, empty)
dump_f95.extension = code_extension dump_f95.__doc__ = CodeGen.dump_code.__doc__
[docs] def dump_h(self, routines, f, prefix, header=True, empty=True): """Writes the interface to a header file. This file contains all the function declarations. Parameters ========== routines : list A list of Routine instances. f : file-like Where to write the file. prefix : string The filename prefix. header : bool, optional When True, a header comment is included on top of each source file. [default : True] empty : bool, optional When True, empty lines are included to structure the source files. [default : True] """ if header: print(''.join(self._get_header()), file=f) if empty: print(file=f) # declaration of the function prototypes for routine in routines: prototype = self.get_interface(routine) f.write(prototype) if empty: print(file=f)
dump_h.extension = interface_extension # This list of dump functions is used by CodeGen.write to know which dump # functions it has to call. dump_fns = [dump_f95, dump_h]
[docs]class OctaveCodeGen(CodeGen): """Generator for Octave code. The .write() method inherited from CodeGen will output a code file <prefix>.m. Octave .m files usually contain one function. That function name should match the filename (``prefix``). If you pass multiple ``name_expr`` pairs, the latter ones are presumed to be private functions accessed by the primary function. You should only pass inputs to ``argument_sequence``: outputs are ordered according to their order in ``name_expr``. """ code_extension = "m"
[docs] def routine(self, name, expr, argument_sequence): """Specialized Routine creation for Octave.""" # FIXME: this is probably general enough for other high-level # languages, perhaps its the C/Fortran one that is specialized! if is_sequence(expr) and not isinstance(expr, (MatrixBase, MatrixExpr)): if not expr: raise ValueError("No expression given") expressions = Tuple(*expr) else: expressions = Tuple(expr) # local variables local_vars = set([i.label for i in expressions.atoms(Idx)]) # symbols that should be arguments symbols = expressions.free_symbols - local_vars # Octave supports multiple return values return_vals = [] for (i, expr) in enumerate(expressions): if isinstance(expr, Equality): out_arg = expr.lhs expr = expr.rhs symbol = out_arg if isinstance(out_arg, Indexed): symbol = out_arg.base.label if not isinstance(out_arg, (Indexed, Symbol, MatrixSymbol)): raise CodeGenError("Only Indexed, Symbol, or MatrixSymbol " "can define output arguments.") return_vals.append(Result(expr, name=symbol, result_var=out_arg)) if not expr.has(symbol): # this is a pure output: remove from the symbols list, so # it doesn't become an input. symbols.remove(symbol) else: # we have no name for this output return_vals.append(Result(expr, name='out%d' % (i+1))) # setup input argument list arg_list = [] array_symbols = {} for array in expressions.atoms(Indexed): array_symbols[array.base.label] = array for array in expressions.atoms(MatrixSymbol): array_symbols[array] = array for symbol in sorted(symbols, key=str): arg_list.append(InputArgument(symbol)) if argument_sequence is not None: # if the user has supplied IndexedBase instances, we'll accept that new_sequence = [] for arg in argument_sequence: if isinstance(arg, IndexedBase): new_sequence.append(arg.label) else: new_sequence.append(arg) argument_sequence = new_sequence missing = [x for x in arg_list if x.name not in argument_sequence] if missing: raise CodeGenArgumentListError("Argument list didn't specify: %s" % ", ".join([str(m.name) for m in missing]), missing) # create redundant arguments to produce the requested sequence name_arg_dict = dict([(x.name, x) for x in arg_list]) new_args = [] for symbol in argument_sequence: try: new_args.append(name_arg_dict[symbol]) except KeyError: new_args.append(InputArgument(symbol)) arg_list = new_args return Routine(name, arg_list, return_vals, local_vars)
def _get_symbol(self, s): """Print the symbol appropriately.""" return octave_code(s).strip() def _get_header(self): """Writes a common header for the generated files.""" code_lines = [] tmp = header_comment % {"version": sympy_version, "project": self.project} for line in tmp.splitlines(): if line == '': code_lines.append("%\n") else: code_lines.append("%% %s\n" % line) return code_lines def _preprocessor_statements(self, prefix): return [] def _get_routine_opening(self, routine): """Returns the opening statements of the routine.""" code_list = [] code_list.append("function ") # Outputs outs = [] for i, result in enumerate(routine.results): if isinstance(result, Result): # Note: name not result_var; want `y` not `y(i)` for Indexed s = self._get_symbol(result.name) else: raise CodeGenError("unexpected object in Routine results") outs.append(s) if len(outs) > 1: code_list.append("[" + (", ".join(outs)) + "]") else: code_list.append("".join(outs)) code_list.append(" = ") # Inputs args = [] for i, arg in enumerate(routine.arguments): if isinstance(arg, (OutputArgument, InOutArgument)): raise CodeGenError("Octave: invalid argument of type %s" % str(type(arg))) if isinstance(arg, InputArgument): args.append("%s" % self._get_symbol(arg.name)) args = ", ".join(args) code_list.append("%s(%s)\n" % (routine.name, args)) code_list = [ "".join(code_list) ] return code_list def _declare_arguments(self, routine): return [] def _declare_locals(self, routine): return [] def _get_routine_ending(self, routine): return ["end\n"] def _call_printer(self, routine): declarations = [] code_lines = [] for i, result in enumerate(routine.results): if isinstance(result, Result): assign_to = result.result_var else: raise CodeGenError("unexpected object in Routine results") constants, not_supported, oct_expr = octave_code(result.expr, assign_to=assign_to, human=False) for obj, v in sorted(constants, key=str): declarations.append( " %s = %s; %% constant\n" % (obj, v)) for obj in sorted(not_supported, key=str): if isinstance(obj, Function): name = obj.func else: name = obj declarations.append( " %% unsupported: %s\n" % (name)) code_lines.append("%s\n" % (oct_expr)) return declarations + code_lines def _indent_code(self, codelines): # Note that indenting seems to happen twice, first # statement-by-statement by OctavePrinter then again here. p = OctaveCodePrinter({'human': False}) return p.indent_code(codelines) return codelines
[docs] def dump_m(self, routines, f, prefix, header=True, empty=True, inline=True): # Note used to call self.dump_code() but we need more control for header code_lines = self._preprocessor_statements(prefix) for i, routine in enumerate(routines): if i > 0: if empty: code_lines.append("\n") code_lines.extend(self._get_routine_opening(routine)) if i == 0: if routine.name != prefix: raise ValueError('Octave function name should match prefix') if header: code_lines.append("%" + prefix.upper() + " Autogenerated by sympy\n") code_lines.append(''.join(self._get_header())) code_lines.extend(self._declare_arguments(routine)) code_lines.extend(self._declare_locals(routine)) if empty: code_lines.append("\n") code_lines.extend(self._call_printer(routine)) if empty: code_lines.append("\n") code_lines.extend(self._get_routine_ending(routine)) code_lines = self._indent_code(''.join(code_lines)) if code_lines: f.write(code_lines)
dump_m.extension = code_extension dump_m.__doc__ = CodeGen.dump_code.__doc__ # This list of dump functions is used by CodeGen.write to know which dump # functions it has to call. dump_fns = [dump_m]
def get_code_generator(language, project): CodeGenClass = {"C": CCodeGen, "F95": FCodeGen, "OCTAVE": OctaveCodeGen}.get(language.upper()) if CodeGenClass is None: raise ValueError("Language '%s' is not supported." % language) return CodeGenClass(project) # # Friendly functions #
[docs]def codegen(name_expr, language, prefix=None, project="project", to_files=False, header=True, empty=True, argument_sequence=None): """Generate source code for expressions in a given language. Parameters ========== name_expr : tuple, or list of tuples A single (name, expression) tuple or a list of (name, expression) tuples. Each tuple corresponds to a routine. If the expression is an equality (an instance of class Equality) the left hand side is considered an output argument. If expression is an iterable, then the routine will have multiple outputs. language : string A string that indicates the source code language. This is case insensitive. Currently, 'C', 'F95' and 'Octave' are supported. 'Octave' generates code compatible with both Octave and Matlab. prefix : string, optional A prefix for the names of the files that contain the source code. Language-dependent suffixes will be appended. If omitted, the name of the first name_expr tuple is used. project : string, optional A project name, used for making unique preprocessor instructions. [default: "project"] to_files : bool, optional When True, the code will be written to one or more files with the given prefix, otherwise strings with the names and contents of these files are returned. [default: False] header : bool, optional When True, a header is written on top of each source file. [default: True] empty : bool, optional When True, empty lines are used to structure the code. [default: True] argument_sequence : iterable, optional Sequence of arguments for the routine in a preferred order. A CodeGenError is raised if required arguments are missing. Redundant arguments are used without warning. If omitted, arguments will be ordered alphabetically, but with all input aguments first, and then output or in-out arguments. Examples ======== >>> from sympy.utilities.codegen import codegen >>> from sympy.abc import x, y, z >>> [(c_name, c_code), (h_name, c_header)] = codegen( ... ("f", x+y*z), "C", "test", header=False, empty=False) >>> print(c_name) test.c >>> print(c_code) #include "test.h" #include <math.h> double f(double x, double y, double z) { double f_result; f_result = x + y*z; return f_result; } >>> print(h_name) test.h >>> print(c_header) #ifndef PROJECT__TEST__H #define PROJECT__TEST__H double f(double x, double y, double z); #endif Another example using Equality objects to give named outputs. Here the filename (prefix) is taken from the first (name, expr) pair. >>> from sympy.abc import f, g >>> from sympy import Eq >>> [(c_name, c_code), (h_name, c_header)] = codegen( ... [("myfcn", x + y), ("fcn2", [Eq(f, 2*x), Eq(g, y)])], ... "C", header=False, empty=False) >>> print(c_name) myfcn.c >>> print(c_code) #include "myfcn.h" #include <math.h> double myfcn(double x, double y) { double myfcn_result; myfcn_result = x + y; return myfcn_result; } void fcn2(double x, double y, double *f, double *g) { (*f) = 2*x; (*g) = y; } """ # Initialize the code generator. code_gen = get_code_generator(language, project) if isinstance(name_expr[0], string_types): # single tuple is given, turn it into a singleton list with a tuple. name_expr = [name_expr] if prefix is None: prefix = name_expr[0][0] # Construct Routines appropriate for this code_gen from (name, expr) pairs. routines = [] for name, expr in name_expr: routines.append(code_gen.routine(name, expr, argument_sequence)) # Write the code. return code_gen.write(routines, prefix, to_files, header, empty)
[docs]def make_routine(name, expr, argument_sequence=None, language="F95"): """A factory that makes an appropriate Routine from an expression. Parameters ========== name : string The name of this routine in the generated code. expr : expression or list/tuple of expressions A SymPy expression that the Routine instance will represent. If given a list or tuple of expressions, the routine will be considered to have multiple return values and/or output arguments. argument_sequence : list or tuple, optional List arguments for the routine in a preferred order. If omitted, the results are language dependent, for example, alphabetical order or in the same order as the given expressions. language : string, optional Specify a target language. The Routine itself should be language-agnostic but the precise way one is created, error checking, etc depend on the language. [default: "F95"]. A decision about whether to use output arguments or return values is made depending on both the language and the particular mathematical expressions. For an expression of type Equality, the left hand side is typically made into an OutputArgument (or perhaps an InOutArgument if appropriate). Otherwise, typically, the calculated expression is made a return values of the routine. Examples ======== >>> from sympy.utilities.codegen import make_routine >>> from sympy.abc import x, y, f, g >>> from sympy import Eq >>> r = make_routine('test', [Eq(f, 2*x), Eq(g, x + y)]) >>> [arg.result_var for arg in r.results] [] >>> [arg.name for arg in r.arguments] [x, y, f, g] >>> [arg.name for arg in r.result_variables] [f, g] >>> r.local_vars set() Another more complicated example with a mixture of specified and automatically-assigned names. Also has Matrix output. >>> from sympy import Matrix >>> r = make_routine('fcn', [x*y, Eq(f, 1), Eq(g, x + g), Matrix([[x, 2]])]) >>> [arg.result_var for arg in r.results] # doctest: +SKIP [result_5397460570204848505] >>> [arg.expr for arg in r.results] [x*y] >>> [arg.name for arg in r.arguments] # doctest: +SKIP [x, y, f, g, out_8598435338387848786] We can examine the various arguments more closely: >>> from sympy.utilities.codegen import (InputArgument, OutputArgument, ... InOutArgument) >>> [a.name for a in r.arguments if isinstance(a, InputArgument)] [x, y] >>> [a.name for a in r.arguments if isinstance(a, OutputArgument)] # doctest: +SKIP [f, out_8598435338387848786] >>> [a.expr for a in r.arguments if isinstance(a, OutputArgument)] [1, Matrix([[x, 2]])] >>> [a.name for a in r.arguments if isinstance(a, InOutArgument)] [g] >>> [a.expr for a in r.arguments if isinstance(a, InOutArgument)] [g + x] """ # initialize a new code generator code_gen = get_code_generator(language, "nothingElseMatters") return code_gen.routine(name, expr, argument_sequence)