# Source code for sympy.functions.special.gamma_functions

from __future__ import print_function, division

from sympy.core import Add, S, sympify, oo, pi, Dummy
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.compatibility import range
from .zeta_functions import zeta
from .error_functions import erf, erfc
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial

###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################

[docs]class gamma(Function):
r"""
The gamma function

.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{t} \mathrm{d}t.

The gamma function implements the function which passes through the
values of the factorial function, i.e. \Gamma(n) = (n - 1)! when n is
an integer. More general, \Gamma(z) is defined in the whole complex
plane except at the negative integers where there are simple poles.

Examples
========

>>> from sympy import S, I, pi, oo, gamma
>>> from sympy.abc import x

Several special values are known:

>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2

The Gamma function obeys the mirror symmetry:

>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))

Differentiation with respect to x is supported:

>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)

Series expansion is also supported:

>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3)

We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:

>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I

========

lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/GammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/
"""

unbranched = True

def fdiff(self, argindex=1):
if argindex == 1:
return gamma(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)

@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg.is_Integer:
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q

if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1

if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne

for i in range(3, 2*k, 2):
coeff *= i

if arg.is_positive:
return coeff*sqrt(S.Pi) / 2**n
else:
return 2**n*sqrt(S.Pi) / coeff

if arg.is_integer and arg.is_nonpositive:
return S.ComplexInfinity

def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return gamma(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))

if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return gamma(tail)*RisingFactorial(tail, coeff)

return self.func(*self.args)

def _eval_conjugate(self):
return self.func(self.args[0].conjugate())

def _eval_is_real(self):
x = self.args[0]
if x.is_positive or x.is_noninteger:
return True

def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even

def _eval_rewrite_as_tractable(self, z):
return exp(loggamma(z))

def _eval_rewrite_as_factorial(self, z):
return factorial(z - 1)

def _eval_nseries(self, x, n, logx):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super(gamma, self)._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (gamma(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)

def _latex(self, printer, exp=None):
if len(self.args) != 1:
raise ValueError("Args length should be 1")
aa = printer._print(self.args[0])
if exp:
return r'\Gamma^{%s}{\left(%s \right)}' % (printer._print(exp), aa)
else:
return r'\Gamma{\left(%s \right)}' % aa

@staticmethod
def _latex_no_arg(printer):
return r'\Gamma'

###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################

[docs]class lowergamma(Function):
r"""
The lower incomplete gamma function.

It can be defined as the meromorphic continuation of

.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).

This can be shown to be the same as

.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),

where :math:{}_1F_1 is the (confluent) hypergeometric function.

Examples
========

>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-x**2*exp(-x) - 2*x*exp(-x) + 2 - 2*exp(-x)
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)

========

gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
"""

def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)

else:
raise ArgumentIndexError(self, argindex)

@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
#    function of x.
# 3) For fixed non-positive integers s,
#    lowergamma(s, exp(I*2*pi*n)*x) =
#              2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
#    (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
#    lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
#    where lowergamma_unbranched(s, x) is an entire function (in fact
#    of both s and x), i.e.
#    lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
from sympy import unpolarify, I
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)

# Special values.
if a.is_Number:
# TODO this should be non-recursive
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
return b*cls(b, x) - x**b * exp(-x)

if not a.is_Integer:
return (cls(a + 1, x) + x**a * exp(-x))/a

def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)

def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())

def _eval_rewrite_as_uppergamma(self, s, x):
return gamma(s) - uppergamma(s, x)

def _eval_rewrite_as_expint(self, s, x):
from sympy import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)

@staticmethod
def _latex_no_arg(printer):
return r'\gamma'

[docs]class uppergamma(Function):
r"""
The upper incomplete gamma function.

It can be defined as the meromorphic continuation of

.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).

where \gamma(s, x) is the lower incomplete gamma function,
:class:lowergamma. This can be shown to be the same as

.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),

where :math:{}_1F_1 is the (confluent) hypergeometric function.

The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:

.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).

Examples
========

>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
x**2*exp(-x) + 2*x*exp(-x) + 2*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2

========

gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] http://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""

def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)

def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)

@classmethod
def eval(cls, a, z):
from sympy import unpolarify, I, expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
return S.Zero
elif z is S.Zero:
# TODO: Holds only for Re(a) > 0:
return gamma(a)

# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and (a > 0) == True:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and (a <= 0) == True:
if n != 0:
return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)

# Special values.
if a.is_Number:
# TODO this should be non-recursive
if a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
return b*cls(b, z) + z**b * exp(-z)
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)

if not a.is_Integer:
return (cls(a + 1, z) - z**a * exp(-z))/a

def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())

def _eval_rewrite_as_lowergamma(self, s, x):
return gamma(s) - lowergamma(s, x)

def _eval_rewrite_as_expint(self, s, x):
from sympy import expint
return expint(1 - s, x)*x**s

###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################

[docs]class polygamma(Function):
r"""
The function polygamma(n, z) returns log(gamma(z)).diff(n + 1).

It is a meromorphic function on \mathbb{C} and defined as the (n+1)-th
derivative of the logarithm of the gamma function:

.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).

Examples
========

Several special values are known:

>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-3*log(3)/2 - sqrt(3)*pi/6 - EulerGamma
>>> polygamma(0, 1/S(4))
-3*log(2) - pi/2 - EulerGamma
>>> polygamma(0, 2)
-EulerGamma + 1
>>> polygamma(0, 23)
-EulerGamma + 19093197/5173168

>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo

Differentiation with respect to x is supported:

>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)

>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)

We can rewrite polygamma functions in terms of harmonic numbers:

>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)

========

gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Polygamma_function
.. [2] http://mathworld.wolfram.com/PolygammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""

def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)

def _eval_is_positive(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_odd

def _eval_is_negative(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_even

def _eval_is_real(self):
return self.args[0].is_real

def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super(polygamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]

if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
o = Order(1/z**(2*m), x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
#    quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)

@classmethod
def eval(cls, n, z):
n, z = list(map(sympify, (n, z)))
from sympy import unpolarify

if n.is_integer:
if n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)

if n == -1:
return loggamma(z)
else:
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
if n.is_Number:
if n is S.Zero:
return S.Infinity
else:
return S.Zero
elif z.is_Integer:
if z.is_nonpositive:
return S.ComplexInfinity
else:
if n is S.Zero:
return -S.EulerGamma + harmonic(z - 1, 1)
elif n.is_odd:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)

if n == 0:
if z is S.NaN:
return S.NaN
elif z.is_Rational:
# TODO actually *any* n/m can be done, but that is messy
lookup = {S(1)/2: -2*log(2) - S.EulerGamma,
S(1)/3: -S.Pi/2/sqrt(3) - 3*log(3)/2 - S.EulerGamma,
S(1)/4: -S.Pi/2 - 3*log(2) - S.EulerGamma,
S(3)/4: -3*log(2) - S.EulerGamma + S.Pi/2,
S(2)/3: -3*log(3)/2 + S.Pi/2/sqrt(3) - S.EulerGamma}
if z > 0:
n = floor(z)
z0 = z - n
if z0 in lookup:
return lookup[z0] + Add(*[1/(z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
if z0 in lookup:
return lookup[z0] - Add(*[1/(z0 - 1 - k) for k in range(n)])
elif z in (S.Infinity, S.NegativeInfinity):
return S.Infinity
else:
t = z.extract_multiplicatively(S.ImaginaryUnit)
if t in (S.Infinity, S.NegativeInfinity):
return S.Infinity

# TODO n == 1 also can do some rational z

def _eval_expand_func(self, **hints):
n, z = self.args

if n.is_Integer and n.is_nonnegative:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
z - i, e) for i in range(1, int(coeff) + 1)])
else:
z + i, e) for i in range(0, int(-coeff))])
return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail

elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [ polygamma(n, z + Rational(
i, coeff)) for i in range(0, int(coeff)) ]
if n == 0:
else:
z *= coeff

return polygamma(n, z)

def _eval_rewrite_as_zeta(self, n, z):
if n >= S.One:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
else:
return self

def _eval_rewrite_as_harmonic(self, n, z):
if n.is_integer:
if n == S.Zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))

from sympy import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
return o.getn() * log(x)
else:
return self.func(n, z)

[docs]class loggamma(Function):
r"""
The loggamma function implements the logarithm of the
gamma function i.e, \log\Gamma(x).

Examples
========

Several special values are known. For numerical integral
arguments we have:

>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)

and for symbolic values:

>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo

for half-integral values:

>>> from sympy import S, pi
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))

and general rational arguments:

>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)

The loggamma function has the following limits towards infinity:

>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo

The loggamma function obeys the mirror symmetry
if x \in \mathbb{C} \setminus \{-\infty, 0\}:

>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))

Differentiation with respect to x is supported:

>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)

Series expansion is also supported:

>>> from sympy import series
>>> series(loggamma(x), x, 0, 4)
-log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4)

We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:

>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I

========

gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/LogGammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
z = sympify(z)

if z.is_integer:
if z.is_nonpositive:
return S.Infinity
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))

if z is S.Infinity:
return S.Infinity
elif abs(z) is S.Infinity:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN

def _eval_expand_func(self, **hints):
from sympy import Sum
z = self.args[0]

if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)

return self

def _eval_nseries(self, x, n, logx=None):
x0 = self.args[0].limit(x, 0)
if x0 is S.Zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super(loggamma, self)._eval_nseries(x, n, logx)

def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[0] != oo:
return super(loggamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[0]
m = min(n, ceiling((n + S(1))/2))
r = log(z)*(z - S(1)/2) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)]
o = None
if m == 0:
o = Order(1, x)
else:
o = Order(1/z**(2*m - 1), x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o

def _eval_rewrite_as_intractable(self, z):
return log(gamma(z))

def _eval_is_real(self):
return self.args[0].is_real

def _eval_conjugate(self):
z = self.args[0]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())

def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)

def _sage_(self):
import sage.all as sage
return sage.log_gamma(self.args[0]._sage_())

[docs]def digamma(x):
r"""
The digamma function is the first derivative of the loggamma function i.e,

.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }

In this case, digamma(z) = polygamma(0, z).

========

gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Digamma_function
.. [2] http://mathworld.wolfram.com/DigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(0, x)

[docs]def trigamma(x):
r"""
The trigamma function is the second derivative of the loggamma function i.e,

.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).

In this case, trigamma(z) = polygamma(1, z).

========

gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.

References
==========

.. [1] http://en.wikipedia.org/wiki/Trigamma_function
.. [2] http://mathworld.wolfram.com/TrigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(1, x)