# Source code for sympy.printing.mathematica

"""
Mathematica code printer
"""

from __future__ import print_function, division
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.str import StrPrinter
from sympy.printing.precedence import precedence

# Used in MCodePrinter._print_Function(self)
known_functions = {
"exp": [(lambda x: True, "Exp")],
"log": [(lambda x: True, "Log")],
"sin": [(lambda x: True, "Sin")],
"cos": [(lambda x: True, "Cos")],
"tan": [(lambda x: True, "Tan")],
"cot": [(lambda x: True, "Cot")],
"asin": [(lambda x: True, "ArcSin")],
"acos": [(lambda x: True, "ArcCos")],
"atan": [(lambda x: True, "ArcTan")],
"sinh": [(lambda x: True, "Sinh")],
"cosh": [(lambda x: True, "Cosh")],
"tanh": [(lambda x: True, "Tanh")],
"coth": [(lambda x: True, "Coth")],
"sech": [(lambda x: True, "Sech")],
"csch": [(lambda x: True, "Csch")],
"asinh": [(lambda x: True, "ArcSinh")],
"acosh": [(lambda x: True, "ArcCosh")],
"atanh": [(lambda x: True, "ArcTanh")],
"acoth": [(lambda x: True, "ArcCoth")],
"asech": [(lambda x: True, "ArcSech")],

}

[docs]class MCodePrinter(CodePrinter):
"""A printer to convert python expressions to
strings of the Wolfram's Mathematica code
"""
printmethod = "_mcode"

_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 15,
'user_functions': {},
'human': True,
}

_number_symbols = set()
_not_supported = set()

def __init__(self, settings={}):
"""Register function mappings supplied by user"""
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
for k, v in userfuncs.items():
if not isinstance(v, list):
userfuncs[k] = [(lambda *x: True, v)]
self.known_functions.update(userfuncs)

doprint = StrPrinter.doprint

def _print_Pow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))

def _print_Mul(self, expr):
PREC = precedence(expr)
c, nc = expr.args_cnc()
res = super(MCodePrinter, self)._print_Mul(expr.func(*c))
if nc:
res += '*'
res += '**'.join(self.parenthesize(a, PREC) for a in nc)
return res

def _print_Pi(self, expr):
return 'Pi'

def _print_Infinity(self, expr):
return 'Infinity'

def _print_NegativeInfinity(self, expr):
return '-Infinity'

def _print_list(self, expr):
return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list

def _print_Function(self, expr):
if expr.func.__name__ in self.known_functions:
cond_mfunc = self.known_functions[expr.func.__name__]
for cond, mfunc in cond_mfunc:
if cond(*expr.args):
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")

def _print_Integral(self, expr):
if len(expr.variables) == 1 and not expr.limits[0][1:]:
args = [expr.args[0], expr.variables[0]]
else:
args = expr.args
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"

def _print_Sum(self, expr):
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"

[docs]def mathematica_code(expr, **settings):
r"""Converts an expr to a string of the Wolfram Mathematica code

Examples
========

>>> from sympy import mathematica_code as mcode, symbols, sin
>>> x = symbols('x')
>>> mcode(sin(x).series(x).removeO())
'(1/120)*x^5 - 1/6*x^3 + x'
"""
return MCodePrinter(settings).doprint(expr)