Source code for sympy.printing.repr

A Printer for generating executable code.

The most important function here is srepr that returns a string so that the
relation eval(srepr(expr))=expr holds in an appropriate environment.

from __future__ import print_function, division

from sympy.core.function import AppliedUndef
from .printer import Printer
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps, repr_dps
from sympy.core.compatibility import range

[docs]class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None }
[docs] def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args])
[docs] def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, str): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr)
def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) args = map(self._print, args) return "Add(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_BooleanTrue(self, expr): return "S.true" def _print_BooleanFalse(self, expr): return "S.false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): terms = expr.args if self.order != 'old': args = expr._new_rawargs(*terms).as_ordered_factors() else: args = terms args = map(self._print, args) return "Mul(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): dps = prec_to_dps(expr._prec) r = mlib.to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', prec=%i)" % (expr.__class__.__name__, r, dps) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Symbol(self, expr): d = expr._assumptions.generator if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print( else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(, ', '.join(attr)) def _print_Predicate(self, expr): return "%s(%s)" % (expr.__class__.__name__, self._print( def _print_AppliedPredicate(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
[docs]def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)