Source code for sympy.vector.vector

from sympy.core.assumptions import StdFactKB
from sympy.core import S, Pow, Symbol
from sympy.core.expr import AtomicExpr
from sympy.core.compatibility import range
from sympy import diff as df, sqrt, ImmutableMatrix as Matrix
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.vector.basisdependent import BasisDependent, \
     BasisDependentAdd, BasisDependentMul, BasisDependentZero
from sympy.vector.dyadic import BaseDyadic, Dyadic, DyadicAdd
from sympy.core.compatibility import u

[docs]class Vector(BasisDependent): """ Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user. """ is_Vector = True _op_priority = 12.0 @property
[docs] def components(self): """ Returns the components of this vector in the form of a Python dictionary mapping BaseVector instances to the corresponding measure numbers. Examples ======== >>> from sympy.vector import CoordSysCartesian >>> C = CoordSysCartesian('C') >>> v = 3*C.i + 4*C.j + 5*C.k >>> v.components {C.i: 3, C.j: 4, C.k: 5} """ #The '_components' attribute is defined according to the #subclass of Vector the instance belongs to. return self._components
[docs] def magnitude(self): """ Returns the magnitude of this vector. """ return sqrt(self & self)
[docs] def normalize(self): """ Returns the normalized version of this vector. """ return self / self.magnitude()
[docs] def dot(self, other): """ Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If 'other' is a Vector, returns the dot product scalar (Sympy expression). If 'other' is a Dyadic, the dot product is returned as a Vector. If 'other' is an instance of Del, returns the directional derivate operator as a Python function. If this function is applied to a scalar expression, it returns the directional derivative of the scalar field wrt this Vector. Parameters ========== other: Vector/Dyadic/Del The Vector or Dyadic we are dotting with, or a Del operator . Examples ======== >>> from sympy.vector import CoordSysCartesian >>> C = CoordSysCartesian('C') >>> 0 >>> C.i & C.i 1 >>> v = 3*C.i + 4*C.j + 5*C.k >>> 5 >>> (C.i & C.delop)(C.x*C.y*C.z) C.y*C.z >>> d = C.i.outer(C.i) >>> C.i """ from sympy.vector.functions import express #Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return outvec = for k, v in other.components.items(): vect_dot = k.args[0].dot(self) outvec += vect_dot * v * k.args[1] return outvec from sympy.vector.deloperator import Del if not isinstance(other, Vector) and not isinstance(other, Del): raise TypeError(str(other) + " is not a vector, dyadic or " + "del operator") #Check if the other is a del operator if isinstance(other, Del): def directional_derivative(field): field = express(field, other.system, variables = True) out = * df(field, other._x) out += * df(field, other._y) out += * df(field, other._z) if out == 0 and isinstance(field, Vector): out = return out return directional_derivative if isinstance(self, VectorZero) or isinstance(other, VectorZero): return S(0) v1 = express(self, other._sys) v2 = express(other, other._sys) dotproduct = S(0) for x in other._sys.base_vectors(): dotproduct += (v1.components.get(x, 0) * v2.components.get(x, 0)) return dotproduct
def __and__(self, other): return __and__.__doc__ = dot.__doc__
[docs] def cross(self, other): """ Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if 'other' is a Vector. If 'other' is a Dyadic, this returns a Dyadic instance. Parameters ========== other: Vector/Dyadic The Vector or Dyadic we are crossing with. Examples ======== >>> from sympy.vector import CoordSysCartesian >>> C = CoordSysCartesian('C') >>> C.i.cross(C.j) C.k >>> C.i ^ C.i 0 >>> v = 3*C.i + 4*C.j + 5*C.k >>> v ^ C.i 5*C.j + (-4)*C.k >>> d = C.i.outer(C.i) >>> C.j.cross(d) (-1)*(C.k|C.i) """ #Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return outdyad = for k, v in other.components.items(): cross_product = self.cross(k.args[0]) outer = cross_product.outer(k.args[1]) outdyad += v * outer return outdyad elif not isinstance(other, Vector): raise TypeError(str(other) + " is not a vector") elif (isinstance(self, VectorZero) or isinstance(other, VectorZero)): return #Compute cross product def _det(mat): """This is needed as a little method for to find the determinant of a list in python. SymPy's Matrix won't take in Vector, so need a custom function. The user shouldn't be calling this. """ return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])) outvec = for system, vect in other.separate().items(): tempi = system.i tempj = system.j tempk = system.k tempm = [[tempi, tempj, tempk], [self & tempi, self & tempj, self & tempk], [vect & tempi, vect & tempj, vect & tempk]] outvec += _det(tempm) return outvec
def __xor__(self, other): return self.cross(other) __xor__.__doc__ = cross.__doc__
[docs] def outer(self, other): """ Returns the outer product of this vector with another, in the form of a Dyadic instance. Parameters ========== other : Vector The Vector with respect to which the outer product is to be computed. Examples ======== >>> from sympy.vector import CoordSysCartesian >>> N = CoordSysCartesian('N') >>> N.i.outer(N.j) (N.i|N.j) """ #Handle the special cases if not isinstance(other, Vector): raise TypeError("Invalid operand for outer product") elif (isinstance(self, VectorZero) or isinstance(other, VectorZero)): return #Iterate over components of both the vectors to generate #the required Dyadic instance args = [] for k1, v1 in self.components.items(): for k2, v2 in other.components.items(): args.append((v1*v2) * BaseDyadic(k1, k2)) return DyadicAdd(*args)
[docs] def projection(self, other, scalar=False): """ Returns the vector or scalar projection of the 'other' on 'self'. Examples ======== >>> from sympy.vector.coordsysrect import CoordSysCartesian >>> from sympy.vector.vector import Vector, BaseVector >>> C = CoordSysCartesian('C') >>> i, j, k = C.base_vectors() >>> v1 = i + j + k >>> v2 = 3*i + 4*j >>> v1.projection(v2) 7/3*C.i + 7/3*C.j + 7/3*C.k >>> v1.projection(v2, scalar=True) 7/3 """ if self.equals( return if scalar else if scalar: return / else: return / * self
def __or__(self, other): return self.outer(other) __or__.__doc__ = outer.__doc__
[docs] def to_matrix(self, system): """ Returns the matrix form of this vector with respect to the specified coordinate system. Parameters ========== system : CoordSysCartesian The system wrt which the matrix form is to be computed Examples ======== >>> from sympy.vector import CoordSysCartesian >>> C = CoordSysCartesian('C') >>> from import a, b, c >>> v = a*C.i + b*C.j + c*C.k >>> v.to_matrix(C) Matrix([ [a], [b], [c]]) """ return Matrix([ for unit_vec in system.base_vectors()])
[docs] def separate(self): """ The constituents of this vector in different coordinate systems, as per its definition. Returns a dict mapping each CoordSysCartesian to the corresponding constituent Vector. Examples ======== >>> from sympy.vector import CoordSysCartesian >>> R1 = CoordSysCartesian('R1') >>> R2 = CoordSysCartesian('R2') >>> v = R1.i + R2.i >>> v.separate() == {R1: R1.i, R2: R2.i} True """ parts = {} for vect, measure in self.components.items(): parts[vect.system] = (parts.get(vect.system, + vect*measure) return parts
class BaseVector(Vector, AtomicExpr): """ Class to denote a base vector. """ def __new__(cls, name, index, system, pretty_str, latex_str): name = str(name) pretty_str = str(pretty_str) latex_str = str(latex_str) #Verify arguments if not index in range(0, 3): raise ValueError("index must be 0, 1 or 2") if not isinstance(system, CoordSysCartesian): raise TypeError("system should be a CoordSysCartesian") #Initialize an object obj = super(BaseVector, cls).__new__(cls, Symbol(name), S(index), system, Symbol(pretty_str), Symbol(latex_str)) #Assign important attributes obj._base_instance = obj obj._components = {obj: S(1)} obj._measure_number = S(1) obj._name = name obj._pretty_form = u(pretty_str) obj._latex_form = latex_str obj._system = system assumptions = {} assumptions['commutative'] = True obj._assumptions = StdFactKB(assumptions) #This attr is used for re-expression to one of the systems #involved in the definition of the Vector. Applies to #VectorMul and VectorAdd too. obj._sys = system return obj @property def system(self): return self._system def __str__(self, printer=None): return self._name @property def free_symbols(self): return set([self]) __repr__ = __str__ _sympystr = __str__ class VectorAdd(BasisDependentAdd, Vector): """ Class to denote sum of Vector instances. """ def __new__(cls, *args, **options): obj = BasisDependentAdd.__new__(cls, *args, **options) return obj def __str__(self, printer=None): ret_str = '' items = list(self.separate().items()) items.sort(key = lambda x: x[0].__str__()) for system, vect in items: base_vects = system.base_vectors() for x in base_vects: if x in vect.components: temp_vect = self.components[x]*x ret_str += temp_vect.__str__(printer) + " + " return ret_str[:-3] __repr__ = __str__ _sympystr = __str__ class VectorMul(BasisDependentMul, Vector): """ Class to denote products of scalars and BaseVectors. """ def __new__(cls, *args, **options): obj = BasisDependentMul.__new__(cls, *args, **options) return obj @property def base_vector(self): """ The BaseVector involved in the product. """ return self._base_instance @property def measure_number(self): """ The scalar expression involved in the defition of this VectorMul. """ return self._measure_number class VectorZero(BasisDependentZero, Vector): """ Class to denote a zero vector """ _op_priority = 12.1 _pretty_form = u('0') _latex_form = '\mathbf{\hat{0}}' def __new__(cls): obj = BasisDependentZero.__new__(cls) return obj def _vect_div(one, other): """ Helper for division involving vectors. """ if isinstance(one, Vector) and isinstance(other, Vector): raise TypeError("Cannot divide two vectors") elif isinstance(one, Vector): if other == S.Zero: raise ValueError("Cannot divide a vector by zero") return VectorMul(one, Pow(other, S.NegativeOne)) else: raise TypeError("Invalid division involving a vector") Vector._expr_type = Vector Vector._mul_func = VectorMul Vector._add_func = VectorAdd Vector._zero_func = VectorZero Vector._base_func = BaseVector Vector._div_helper = _vect_div = VectorZero()