Several submodules in SymPy allow one to generate directly compilable and executable code in a variety of different programming languages from Sympy expressions. In addition, there are functions that generate Python importable objects that can evaluate SymPy expressions very efficiently.
We will start with a brief introduction to the components that make up the code generation capabilities of SymPy.
There are four main levels of abstractions:
expression

code printers

code generators

autowrap
sympy.utilities.autowrap uses codegen, and codegen uses the code printers. sympy.utilities.autowrap does everything: it lets you go from SymPy expression to numerical function in the same Python process in one step. codegen is actual code generation, i.e., to compile and use later, or to include in some larger project.
The code printers translate the SymPy objects into actual code, like abs(x) > fabs(x) (for C).
The code printers don’t print optimal code in many cases. An example of this is powers in C. x**2 prints as pow(x, 2) instead of x*x. Other optimizations (like mathematical simplifications) should happen before the code printers.
Currently, sympy.simplify.cse_main.cse() is not applied automatically anywhere in this chain. It ideally happens at the codegen level, or somewhere above it.
We will iterate through the levels below.
The following three lines will be used to setup each example:
>>> from sympy import *
>>> init_printing(use_unicode=True)
>>> from sympy.abc import a, e, k, n, r, t, x, y, z, T, Z
>>> from sympy.abc import beta, omega, tau
>>> f, g = symbols('f, g', cls=Function)
This is where the meat of code generation is; the translation of SymPy expressions to specific languages. Supported languages are C (sympy.printing.ccode.ccode()), Fortran 95 (sympy.printing.fcode.fcode()), Javascript (sympy.printing.jscode.jscode()), Julia (sympy.printing.julia.julia_code()), Mathematica (sympy.printing.mathematica.mathematica_code()), Octave/Matlab (sympy.printing.octave.octave_code()), Python (print_python, which is actually more like a lightweight version of codegen for Python, and sympy.printing.lambdarepr.lambdarepr(), which supports many libraries (like NumPy), and theano (sympy.printing.theanocode.theano_function()). The code printers are special cases of the other prints in SymPy (str printer, pretty printer, etc.).
An important distinction is that the code printer has to deal with assignments (using the sympy.printing.codeprinter.Assignment object).This serves as building blocks for the code printers and hence the codegen module. An example that shows the use of Assignment:
>>> from sympy.printing.codeprinter import Assignment
>>> mat = Matrix([x, y, z]).T
>>> known_mat = MatrixSymbol('K', 1, 3)
>>> Assignment(known_mat, mat)
K := [x y z]
>>> Assignment(known_mat, mat).lhs
K
>>> Assignment(known_mat, mat).rhs
[x y z]
Here is a simple example of printing a C version of a SymPy expression:
>>> expr = (Rational(1, 2) * Z * k * (e**2) / r)
>>> expr
2
Z⋅e ⋅k
────────
2⋅r
>>> ccode(expr)
1.0L/2.0L*Z*pow(e, 2)*k/r
>>> ccode(expr, assign_to="E")
E = 1.0L/2.0L*Z*pow(e, 2)*k/r;
Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. A use case for Piecewise:
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, tau))
if (x > 0) then
tau = x + 1
else
tau = x
end if
The various printers also tend to support Indexed objects well. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:
>>> len_y = 5
>>> mat_1 = IndexedBase('mat_1', shape=(len_y,))
>>> mat_2 = IndexedBase('mat_2', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y1,))
>>> i = Idx('i', len_y1)
>>> eq = Eq(Dy[i], (mat_1[i+1]  mat_1[i]) / (mat_2[i+1]  mat_2[i]))
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=False))
Dy[i] = (mat_1[i + 1]  mat_1[i])/(mat_2[i + 1]  mat_2[i]);
>>> Res = IndexedBase('Res', shape=(len_y,))
>>> j = Idx('j', len_y)
>>> eq = Eq(Res[j], mat_1[j]*mat_2[j])
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=True))
for (var j=0; j<5; j++){
Res[j] = 0;
}
for (var j=0; j<5; j++){
for (var j=0; j<5; j++){
Res[j] = Res[j] + mat_1[j]*mat_2[j];
}
}
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=False))
Res[j] = mat_1[j]*mat_2[j];
Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function:
>>> custom_functions = {
... "f": "existing_octave_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])
An example of Mathematica code printer:
>>> x_ = Function('x')
>>> expr = x_(n*T) * sin((t  n*T) / T)
>>> expr = expr / ((T*n + t) / T)
>>> expr
⎛T⋅n + t⎞
T⋅x(T⋅n)⋅sin⎜────────⎟
⎝ T ⎠
──────────────────────
T⋅n + t
>>> expr = summation(expr, (n, 1, 1))
>>> mathematica_code(expr)
T*x[T]*Sin[(T + t)/T]/(T + t) + T*x[T]*Sin[(T + t)/T]/(T + t) + T*x[0]*Sin[
t/T]/t
We can go through a common expression in different languages we support and see how it works:
>>> k, g1, g2, r, I, S = symbols("k, gamma_1, gamma_2, r, I, S")
>>> expr = k * g1 * g2 / (r**3)
>>> expr = expr * 2 * I * S * (3 * (cos(beta))**2  1) / 2
>>> expr
⎛ 2 ⎞
I⋅S⋅γ₁⋅γ₂⋅k⋅⎝3⋅cos (β)  1⎠
───────────────────────────
3
r
>>> print(jscode(expr, assign_to="H_is"))
H_is = I*S*gamma_1*gamma_2*k*(3*Math.pow(Math.cos(beta), 2)  1)/Math.pow(r, 3);
>>> print(ccode(expr, assign_to="H_is"))
H_is = I*S*gamma_1*gamma_2*k*(3*pow(cos(beta), 2)  1)/pow(r, 3);
>>> print(fcode(expr, assign_to="H_is"))
H_is = I*S*gamma_1*gamma_2*k*(3*cos(beta)**2  1)/r**3
>>> print(julia_code(expr, assign_to="H_is"))
H_is = I.*S.*gamma_1.*gamma_2.*k.*(3*cos(beta).^2  1)./r.^3
>>> print(octave_code(expr, assign_to="H_is"))
H_is = I.*S.*gamma_1.*gamma_2.*k.*(3*cos(beta).^2  1)./r.^3;
>>> print(mathematica_code(expr))
I*S*gamma_1*gamma_2*k*(3*Cos[beta]^2  1)/r^3
This module deals with creating compilable code from SymPy expressions. This is lower level than autowrap, as it doesn’t actually attempt to compile the code, but higher level than the printers, as it generates compilable files (including header files), rather than just code snippets.
The user friendly functions, here, are codegen and make_routine. codegen takes a list of (variable, expression) pairs and a language (C, F95, and Octave/Matlab are supported). It returns, as strings, a code file and a header file (for relevant languages). The variables are created as functions that return the value of the expression as output.
Note
The codegen callable is not in the sympy namespace automatically, to use it you must first import codegen from sympy.utilities.codegen
For instance:
>>> from sympy.utilities.codegen import codegen
>>> length, breadth, height = symbols('length, breadth, height')
>>> [(c_name, c_code), (h_name, c_header)] = \
... codegen(('volume', length*breadth*height), "C", "test",
... header=False, empty=False)
>>> print(c_name)
test.c
>>> print(c_code)
#include "test.h"
#include <math.h>
double volume(double breadth, double height, double length) {
double volume_result;
volume_result = breadth*height*length;
return volume_result;
}
>>> print(h_name)
test.h
>>> print(c_header)
#ifndef PROJECT__TEST__H
#define PROJECT__TEST__H
double volume(double breadth, double height, double length);
#endif
Various flags to codegen let you modify things. The project name for preprocessor instructions can be varied using project. Variables listed as global variables in arg global_vars will not show up as function arguments.
language is a caseinsensitive string that indicates the source code language. Currently, C, F95 and Octave are supported. Octave generates code compatible with both Octave and Matlab.
header when True, a header is written on top of each source file. empty when True, empty lines are used to structure the code. With argument_sequence a sequence of arguments for the routine can be defined in a preferred order.
prefix defines a prefix for the names of the files that contain the source code. If omitted, the name of the first name_expr tuple is used.
to_files when True, the code will be written to one or more files with the given prefix.
Here is an example:
>>> [(f_name, f_code), header] = codegen(("volume", length*breadth*height),
... "F95", header=False, empty=False, argument_sequence=(breadth, length),
... global_vars=(height,))
>>> print(f_code)
REAL*8 function volume(breadth, length)
implicit none
REAL*8, intent(in) :: breadth
REAL*8, intent(in) :: length
volume = breadth*height*length
end function
The method make_routine creates a Routine object, which represents an evaluation routine for a set of expressions. This is only good for internal use by the CodeGen objects, as an intermediate representation from SymPy expression to generated code. It is not recommended to make a Routine object yourself. You should instead use make_routine method. make_routine in turn calls the routine method of the CodeGen object depending upon the language of choice. This creates the internal objects representing assignments and so on, and creates the Routine class with them.
The various codegen objects such as Routine and Variable aren’t SymPy objects (they don’t subclass from Basic).
For example:
>>> from sympy.utilities.codegen import make_routine
>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, y, x, 6)
>>> routine = make_routine('my_routine', expr)
>>> [arg.result_var for arg in routine.results]
[result₅₁₄₂₃₄₁₆₈₁₃₉₇₇₁₉₄₂₈]
>>> [arg.expr for arg in routine.results]
⎡ ___________ ⎤
⎢ y ╱ (y + 2)! 2⋅x ⎥
⎢4⋅√6⋅(4⋅x) ⋅ ╱ ───────── ⋅ℯ ⋅assoc_laguerre(y + 2, 2⋅y + 1, 4⋅x)⎥
⎢ ╲╱ (y + 3)! ⎥
⎢──────────────────────────────────────────────────────────────────────⎥
⎣ 3 ⎦
>>> [arg.name for arg in routine.arguments]
[x, y]
Another more complicated example with a mixture of specified and automaticallyassigned names. Also has Matrix output:
>>> routine = make_routine('fcn', [x*y, Eq(a, 1), Eq(r, x + r), Matrix([[x, 2]])])
>>> [arg.result_var for arg in routine.results]
[result_5397460570204848505]
>>> [arg.expr for arg in routine.results]
[x⋅y]
>>> [arg.name for arg in routine.arguments]
[x, y, a, r, out_8598435338387848786]
We can examine the various arguments more closely:
>>> from sympy.utilities.codegen import (InputArgument, OutputArgument,
... InOutArgument)
>>> [a.name for a in routine.arguments if isinstance(a, InputArgument)]
[x, y]
>>> [a.name for a in routine.arguments if isinstance(a, OutputArgument)]
[a, out_8598435338387848786]
>>> [a.expr for a in routine.arguments if isinstance(a, OutputArgument)]
[1, [x 2]]
>>> [a.name for a in routine.arguments if isinstance(a, InOutArgument)]
[r]
>>> [a.expr for a in routine.arguments if isinstance(a, InOutArgument)]
[r + x]
The full API reference can be viewed here.
Autowrap automatically generates code, writes it to disk, compiles it, and imports it into the current session. Main functions of this module are autowrap, binary_function, and ufuncify.
It also automatically converts expressions containing Indexed objects into summations. The classes IndexedBase, Indexed and Idx represent a matrix element M[i, j]. See Tensor Module for more on this.
autowrap creates a wrapper using f2py or Cython and creates a numerical function.
Note
The autowrap callable is not in the sympy namespace automatically, to use it you must first import autowrap from sympy.utilities.autowrap
The callable returned from autowrap() is a binary Python function, not a SymPy object. For example:
>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x  y + z)**(13)).expand()
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
1.0
The various flags available with autowrap() help to modify the services provided by the method. The argument tempdir tells autowrap to compile the code in a specific directory, and leave the files intact when finished. For instance:
>>> from sympy.utilities.autowrap import autowrap
>>> from sympy.physics.qho_1d import psi_n
>>> x_ = IndexedBase('x')
>>> y_ = IndexedBase('y')
>>> m = symbols('m', integer=True)
>>> i = Idx('i', m)
>>> qho = autowrap(Eq(y_[i], psi_n(0, x_[i], m, omega)), tempdir='/tmp')
Checking the Fortran source code in the directory specified reveals this:
subroutine autofunc(m, omega, x, y)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(in), dimension(1:m) :: x
REAL*8, intent(out), dimension(1:m) :: y
INTEGER*4 :: i
REAL*8, parameter :: hbar = 1.05457162d34
REAL*8, parameter :: pi = 3.14159265358979d0
do i = 1, m
y(i) = (m*omega)**(1.0d0/4.0d0)*exp(4.74126166983329d+33*m*omega*x(i &
)**2)/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do
end subroutine
Using the argument args along with it changes argument sequence:
>>> eq = Eq(y_[i], psi_n(0, x_[i], m, omega))
>>> qho = autowrap(eq, tempdir='/tmp', args=[y, x, m, omega])
yields:
subroutine autofunc(y, x, m, omega)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(out), dimension(1:m) :: y
REAL*8, intent(in), dimension(1:m) :: x
INTEGER*4 :: i
REAL*8, parameter :: hbar = 1.05457162d34
REAL*8, parameter :: pi = 3.14159265358979d0
do i = 1, m
y(i) = (m*omega)**(1.0d0/4.0d0)*exp(4.74126166983329d+33*m*omega*x(i &
)**2)/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do
end subroutine
The argument verbose is boolean, optional and if True, autowrap will not mute the command line backends. This can be helpful for debugging.
The argument language and backend are used to change defaults: Fortran and f2py to C and Cython. The argument helpers is used to define auxiliary expressions needed for the main expression. If the main expression needs to call a specialized function it should be put in the helpers iterable. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should be tuples with (<function_name>, <sympy_expression>, <arguments>). It is mandatory to supply an argument sequence to helper routines.
Another method available at the autowrap level is binary_function. It returns a sympy function. The advantage is that we can have very fast functions as compared to SymPy speeds. This is because we will be using compiled functions with Sympy attributes and methods. An illustration:
>>> from sympy.utilities.autowrap import binary_function
>>> from sympy.physics.hydrogen import R_nl
>>> psi_nl = R_nl(1, 0, a, r)
>>> f = binary_function('f', psi_nl)
>>> f(a, r).evalf(3, subs={a: 1, r: 2})
0.766
While NumPy operations are very efficient for vectorized data but they sometimes incur unnecessary costs when chained together. Consider the following operation
>>> x = get_numpy_array(...)
>>> y = sin(x) / x
The operators sin and / call routines that execute tight for loops in C. The resulting computation looks something like this
for(int i = 0; i < n; i++)
{
temp[i] = sin(x[i]);
}
for(int i = i; i < n; i++)
{
y[i] = temp[i] / x[i];
}
This is slightly suboptimal because
A better solution would fuse both elementwise operations into a single for loop
for(int i = i; i < n; i++)
{
y[i] = sin(x[i]) / x[i];
}
Statically compiled projects like NumPy are unable to take advantage of such optimizations. Fortunately, SymPy is able to generate efficient lowlevel C or Fortran code. It can then depend on projects like Cython or f2py to compile and reconnect that code back up to Python. Fortunately this process is well automated and a SymPy user wishing to make use of this code generation should call the ufuncify function.
ufuncify is the third method available with Autowrap module. It basically implies ‘Universal functions’ and follows an ideology set by Numpy. The main point of ufuncify as compared to autowrap is that it allows arrays as arguments and can operate in an elementbyelement fashion. The core operation done elementwise is in accordance to Numpy’s array broadcasting rules. See this for more.
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
>>> from sympy.utilities.autowrap import ufuncify
>>> f = ufuncify([x], expr)
This function f consumes and returns a NumPy array. Generally ufuncify performs at least as well as lambdify. If the expression is complicated then ufuncify often significantly outperforms the NumPy backed solution. Jensen has a good blog post on this topic.
Let us see an example for some quantitative analysis:
>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, 1, x, 6)
>>> expr
2⋅x
8⋅x⋅(4⋅x + 4)⋅ℯ
────────────────────
3
The lambdify function translates SymPy expressions into Python functions, leveraging a variety of numerical libraries. By default lambdify relies on implementations in the math standard library. Naturally, Raw Python is faster than Sympy. However it also supports mpmath and most notably, numpy. Using the numpy library gives the generated function access to powerful vectorized ufuncs that are backed by compiled C code.
Let us compare the speeds:
>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.utilities.lambdify import lambdify
>>> fn_numpy = lambdify(x, expr, 'numpy')
>>> fn_fortran = ufuncify([x], expr, backend='f2py')
>>> from numpy import linspace
>>> xx = linspace(0, 1, 5)
>>> fn_numpy(xx)
[ 0. 1.21306132 0.98101184 0.44626032 0. ]
>>> fn_fortran(xx)
[ 0. 1.21306132 0.98101184 0.44626032 0. ]
>>> import timeit
>>> timeit.timeit('fn_numpy(xx)', 'from __main__ import fn_numpy, xx', number=10000)
0.18891601900395472
>>> timeit.timeit('fn_fortran(xx)', 'from __main__ import fn_fortran, xx', number=10000)
0.004707066000264604
The options available with ufuncify are more or less the same as those available with autowrap.
There are other facilities available with Sympy to do efficient numeric computation. See this page for a comparison among them.