Source code for sympy.polys.domains.gmpyrationalfield

"""Implementaton of :class:`GMPYRationalField` class. """

from __future__ import print_function, division

from sympy.polys.domains.rationalfield import RationalField
from sympy.polys.domains.groundtypes import (
    GMPYRational, SymPyRational,
    gmpy_numer, gmpy_denom, gmpy_factorial, gmpy_qdiv,
)

from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public

[docs]@public class GMPYRationalField(RationalField): """Rational field based on GMPY mpq class. """ dtype = GMPYRational zero = dtype(0) one = dtype(1) tp = type(one) alias = 'QQ_gmpy' def __init__(self): pass def get_ring(self): """Returns ring associated with ``self``. """ from sympy.polys.domains import GMPYIntegerRing return GMPYIntegerRing() def to_sympy(self, a): """Convert `a` to a SymPy object. """ return SymPyRational(int(gmpy_numer(a)), int(gmpy_denom(a))) def from_sympy(self, a): """Convert SymPy's Integer to `dtype`. """ if a.is_Rational: return GMPYRational(a.p, a.q) elif a.is_Float: from sympy.polys.domains import RR return GMPYRational(*RR.to_rational(a)) else: raise CoercionFailed("expected `Rational` object, got %s" % a) def from_ZZ_python(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return GMPYRational(a) def from_QQ_python(K1, a, K0): """Convert a Python `Fraction` object to `dtype`. """ return GMPYRational(a.numerator, a.denominator) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY `mpz` object to `dtype`. """ return GMPYRational(a) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY `mpq` object to `dtype`. """ return a def from_RealField(K1, a, K0): """Convert a mpmath `mpf` object to `dtype`. """ return GMPYRational(*K0.to_rational(a)) def exquo(self, a, b): """Exact quotient of `a` and `b`, implies `__div__`. """ return GMPYRational(a) / GMPYRational(b) def quo(self, a, b): """Quotient of `a` and `b`, implies `__div__`. """ return GMPYRational(a) / GMPYRational(b) def rem(self, a, b): """Remainder of `a` and `b`, implies nothing. """ return self.zero def div(self, a, b): """Division of `a` and `b`, implies `__div__`. """ return GMPYRational(a) / GMPYRational(b), self.zero def numer(self, a): """Returns numerator of `a`. """ return a.numerator def denom(self, a): """Returns denominator of `a`. """ return a.denominator def factorial(self, a): """Returns factorial of `a`. """ return GMPYRational(gmpy_factorial(int(a)))