Source code for sympy.polys.orthopolys

"""Efficient functions for generating orthogonal polynomials. """

from __future__ import print_function, division

from sympy import Dummy

from sympy.utilities import public

from sympy.polys.constructor import construct_domain
from sympy.polys.polytools import Poly, PurePoly
from sympy.polys.polyclasses import DMP

from sympy.polys.densearith import (
    dup_mul, dup_mul_ground, dup_lshift, dup_sub, dup_add
)

from sympy.polys.domains import ZZ, QQ

from sympy.core.compatibility import range


def dup_jacobi(n, a, b, K):
    """Low-level implementation of Jacobi polynomials. """
    seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]]

    for i in range(2, n + 1):
        den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
        f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
        f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
        f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
        p0 = dup_mul_ground(seq[-1], f0, K)
        p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
        p2 = dup_mul_ground(seq[-2], f2, K)
        seq.append(dup_sub(dup_add(p0, p1, K), p2, K))

    return seq[n]


[docs]@public def jacobi_poly(n, a, b, x=None, **args): """Generates Jacobi polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Jacobi polynomial of degree %s" % n) K, v = construct_domain([a, b], field=True) poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_gegenbauer(n, a, K): """Low-level implementation of Gegenbauer polynomials. """ seq = [[K.one], [K(2)*a, K.zero]] for i in range(2, n + 1): f1 = K(2) * (i + a - K.one) / i f2 = (i + K(2)*a - K(2)) / i p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K) p2 = dup_mul_ground(seq[-2], f2, K) seq.append(dup_sub(p1, p2, K)) return seq[n]
[docs]def gegenbauer_poly(n, a, x=None, **args): """Generates Gegenbauer polynomial of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate Gegenbauer polynomial of degree %s" % n) K, a = construct_domain(a, field=True) poly = DMP(dup_gegenbauer(int(n), a, K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_chebyshevt(n, K): """Low-level implementation of Chebyshev polynomials of the 1st kind. """ seq = [[K.one], [K.one, K.zero]] for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) seq.append(dup_sub(a, seq[-2], K)) return seq[n]
[docs]@public def chebyshevt_poly(n, x=None, **args): """Generates Chebyshev polynomial of the first kind of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate 1st kind Chebyshev polynomial of degree %s" % n) poly = DMP(dup_chebyshevt(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_chebyshevu(n, K): """Low-level implementation of Chebyshev polynomials of the 2nd kind. """ seq = [[K.one], [K(2), K.zero]] for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) seq.append(dup_sub(a, seq[-2], K)) return seq[n]
[docs]@public def chebyshevu_poly(n, x=None, **args): """Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate 2nd kind Chebyshev polynomial of degree %s" % n) poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_hermite(n, K): """Low-level implementation of Hermite polynomials. """ seq = [[K.one], [K(2), K.zero]] for i in range(2, n + 1): a = dup_lshift(seq[-1], 1, K) b = dup_mul_ground(seq[-2], K(i - 1), K) c = dup_mul_ground(dup_sub(a, b, K), K(2), K) seq.append(c) return seq[n]
[docs]@public def hermite_poly(n, x=None, **args): """Generates Hermite polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Hermite polynomial of degree %s" % n) poly = DMP(dup_hermite(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_legendre(n, K): """Low-level implementation of Legendre polynomials. """ seq = [[K.one], [K.one, K.zero]] for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1, i), K) b = dup_mul_ground(seq[-2], K(i - 1, i), K) seq.append(dup_sub(a, b, K)) return seq[n]
[docs]@public def legendre_poly(n, x=None, **args): """Generates Legendre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Legendre polynomial of degree %s" % n) poly = DMP(dup_legendre(int(n), QQ), QQ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_laguerre(n, alpha, K): """Low-level implementation of Laguerre polynomials. """ seq = [[K.zero], [K.one]] for i in range(1, n + 1): a = dup_mul(seq[-1], [-K.one/i, alpha/i + K(2*i - 1)/i], K) b = dup_mul_ground(seq[-2], alpha/i + K(i - 1)/i, K) seq.append(dup_sub(a, b, K)) return seq[-1]
[docs]@public def laguerre_poly(n, x=None, alpha=None, **args): """Generates Laguerre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Laguerre polynomial of degree %s" % n) if alpha is not None: K, alpha = construct_domain( alpha, field=True) # XXX: ground_field=True else: K, alpha = QQ, QQ(0) poly = DMP(dup_laguerre(int(n), alpha, K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def dup_spherical_bessel_fn(n, K): """ Low-level implementation of fn(n, x) """ seq = [[K.one], [K.one, K.zero]] for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1), K) seq.append(dup_sub(a, seq[-2], K)) return dup_lshift(seq[n], 1, K) def dup_spherical_bessel_fn_minus(n, K): """ Low-level implementation of fn(-n, x) """ seq = [[K.one, K.zero], [K.zero]] for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2*i), K) seq.append(dup_sub(a, seq[-2], K)) return seq[n] def spherical_bessel_fn(n, x=None, **args): """ Coefficients for the spherical Bessel functions. Those are only needed in the jn() function. The coefficients are calculated from: fn(0, z) = 1/z fn(1, z) = 1/z**2 fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z) Examples ======== >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn >>> from sympy import Symbol >>> z = Symbol("z") >>> fn(1, z) z**(-2) >>> fn(2, z) -1/z + 3/z**3 >>> fn(3, z) -6/z**2 + 15/z**4 >>> fn(4, z) 1/z - 45/z**3 + 105/z**5 """ if n < 0: dup = dup_spherical_bessel_fn_minus(-int(n), ZZ) else: dup = dup_spherical_bessel_fn(int(n), ZZ) poly = DMP(dup, ZZ) if x is not None: poly = Poly.new(poly, 1/x) else: poly = PurePoly.new(poly, 1/Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly