Source code for sympy.printing.precedence

"""A module providing information about the necessity of brackets"""

from __future__ import print_function, division

from sympy.core.function import _coeff_isneg

# Default precedence values for some basic types
    "Lambda": 1,
    "Xor": 10,
    "Or": 20,
    "And": 30,
    "Relational": 35,
    "Add": 40,
    "Mul": 50,
    "Pow": 60,
    "Func": 70,
    "Not": 100,
    "Atom": 1000,
    "BitwiseOr": 36,
    "BitwiseAnd": 38

# A dictionary assigning precedence values to certain classes. These values are
# treated like they were inherited, so not every single class has to be named
# here.
    "Equivalent": PRECEDENCE["Xor"],
    "Xor": PRECEDENCE["Xor"],
    "Implies": PRECEDENCE["Xor"],
    "Or": PRECEDENCE["Or"],
    "And": PRECEDENCE["And"],
    "Add": PRECEDENCE["Add"],
    "Pow": PRECEDENCE["Pow"],
    "Relational": PRECEDENCE["Relational"],
    "Sub": PRECEDENCE["Add"],
    "Not": PRECEDENCE["Not"],
    "Function" : PRECEDENCE["Func"],
    "NegativeInfinity": PRECEDENCE["Add"],
    "MatAdd": PRECEDENCE["Add"],
    "MatMul": PRECEDENCE["Mul"],
    "MatPow": PRECEDENCE["Pow"],
    "HadamardProduct": PRECEDENCE["Mul"],
    "Equality": PRECEDENCE["Mul"],
    "Unequality": PRECEDENCE["Mul"],

# Sometimes it's not enough to assign a fixed precedence value to a
# class. Then a function can be inserted in this dictionary that takes
# an instance of this class as argument and returns the appropriate
# precedence value.

# Precedence functions

def precedence_Mul(item):
    if _coeff_isneg(item):
        return PRECEDENCE["Add"]
    return PRECEDENCE["Mul"]

def precedence_Rational(item):
    if item.p < 0:
        return PRECEDENCE["Add"]
    return PRECEDENCE["Mul"]

def precedence_Integer(item):
    if item.p < 0:
        return PRECEDENCE["Add"]
    return PRECEDENCE["Atom"]

def precedence_Float(item):
    if item < 0:
        return PRECEDENCE["Add"]
    return PRECEDENCE["Atom"]

def precedence_PolyElement(item):
    if item.is_generator:
        return PRECEDENCE["Atom"]
    elif item.is_ground:
        return precedence(item.coeff(1))
    elif item.is_term:
        return PRECEDENCE["Mul"]
        return PRECEDENCE["Add"]

def precedence_FracElement(item):
    if item.denom == 1:
        return precedence_PolyElement(item.numer)
        return PRECEDENCE["Mul"]

def precedence_UnevaluatedExpr(item):
    return precedence(item.args[0])

    "Integer": precedence_Integer,
    "Mul": precedence_Mul,
    "Rational": precedence_Rational,
    "Float": precedence_Float,
    "PolyElement": precedence_PolyElement,
    "FracElement": precedence_FracElement,
    "UnevaluatedExpr": precedence_UnevaluatedExpr,

[docs]def precedence(item): """ Returns the precedence of a given object. """ if hasattr(item, "precedence"): return item.precedence try: mro = item.__class__.__mro__ except AttributeError: return PRECEDENCE["Atom"] for i in mro: n = i.__name__ if n in PRECEDENCE_FUNCTIONS: return PRECEDENCE_FUNCTIONS[n](item) elif n in PRECEDENCE_VALUES: return PRECEDENCE_VALUES[n] return PRECEDENCE["Atom"]
def precedence_traditional(item): """ Returns the precedence of a given object according to the traditional rules of mathematics. This is the precedence for the LaTeX and pretty printer. """ # Integral, Sum, Product, Limit have the precedence of Mul in LaTeX, # the precedence of Atom for other printers: from sympy import Integral, Sum, Product, Limit, Derivative from sympy.core.expr import UnevaluatedExpr from sympy.tensor.functions import TensorProduct if isinstance(item, (Integral, Sum, Product, Limit, Derivative, TensorProduct)): return PRECEDENCE["Mul"] if (item.__class__.__name__ in ("Dot", "Cross", "Gradient", "Divergence", "Curl")): return PRECEDENCE["Mul"]-1 elif isinstance(item, UnevaluatedExpr): return precedence_traditional(item.args[0]) else: return precedence(item)