Source code for sympy.vector.coordsysrect

from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.basic import Basic
from sympy.core.compatibility import string_types, range
from sympy.core.cache import cacheit
from sympy.core import S, Dummy, Lambda
from sympy import symbols, MatrixBase, ImmutableDenseMatrix
from sympy.solvers import solve
from sympy.vector.scalar import BaseScalar
from sympy import eye, trigsimp, ImmutableMatrix as Matrix, Symbol, sin, cos,\
    sqrt, diff, Tuple, acos, atan2, simplify
import sympy.vector
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
                                    SpaceOrienter, QuaternionOrienter)
import collections


def CoordSysCartesian(*args, **kwargs):
    SymPyDeprecationWarning(
        feature="CoordSysCartesian",
        useinstead="CoordSys3D",
        issue=12865,
        deprecated_since_version="1.1"
    ).warn()
    return CoordSys3D(*args, **kwargs)


[docs]class CoordSys3D(Basic): """ Represents a coordinate system in 3-D space. """ def __new__(cls, name, transformation=None, parent=None, location=None, rotation_matrix=None, vector_names=None, variable_names=None): """ The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another. Parameters ========== name : str The name of the new CoordSys3D instance. transformation : Lambda, Tuple, str Transformation defined by transformation equations or chosen from predefined ones. location : Vector The position vector of the new system's origin wrt the parent instance. rotation_matrix : SymPy ImmutableMatrix The rotation matrix of the new coordinate system with respect to the parent. In other words, the output of new_system.rotation_matrix(parent). parent : CoordSys3D The coordinate system wrt which the orientation/location (or both) is being defined. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. """ name = str(name) Vector = sympy.vector.Vector BaseVector = sympy.vector.BaseVector Point = sympy.vector.Point if not isinstance(name, string_types): raise TypeError("name should be a string") if transformation is not None: if (location is not None) or (rotation_matrix is not None): raise ValueError("specify either `transformation` or " "`location`/`rotation_matrix`") if isinstance(transformation, (Tuple, tuple, list)): if isinstance(transformation[0], MatrixBase): rotation_matrix = transformation[0] location = transformation[1] else: transformation = Lambda(transformation[0], transformation[1]) elif isinstance(transformation, collections.Callable): x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy) transformation = Lambda((x1, x2, x3), transformation(x1, x2, x3)) elif isinstance(transformation, string_types): transformation = Symbol(transformation) elif isinstance(transformation, (Symbol, Lambda)): pass else: raise TypeError("transformation: " "wrong type {0}".format(type(transformation))) # If orientation information has been provided, store # the rotation matrix accordingly if rotation_matrix is None: rotation_matrix = ImmutableDenseMatrix(eye(3)) else: if not isinstance(rotation_matrix, MatrixBase): raise TypeError("rotation_matrix should be an Immutable" + "Matrix instance") rotation_matrix = rotation_matrix.as_immutable() # If location information is not given, adjust the default # location as Vector.zero if parent is not None: if not isinstance(parent, CoordSys3D): raise TypeError("parent should be a " + "CoordSys3D/None") if location is None: location = Vector.zero else: if not isinstance(location, Vector): raise TypeError("location should be a Vector") # Check that location does not contain base # scalars for x in location.free_symbols: if isinstance(x, BaseScalar): raise ValueError("location should not contain" + " BaseScalars") origin = parent.origin.locate_new(name + '.origin', location) else: location = Vector.zero origin = Point(name + '.origin') if transformation is None: transformation = Tuple(rotation_matrix, location) if isinstance(transformation, Tuple): lambda_transformation = CoordSys3D._compose_rotation_and_translation( transformation[0], transformation[1], parent ) r, l = transformation l = l._projections lambda_lame = CoordSys3D._get_lame_coeff('cartesian') lambda_inverse = lambda x, y, z: r.inv()*Matrix( [x-l[0], y-l[1], z-l[2]]) elif isinstance(transformation, Symbol): trname = transformation.name lambda_transformation = CoordSys3D._get_transformation_lambdas(trname) if parent is not None: if parent.lame_coefficients() != (S(1), S(1), S(1)): raise ValueError('Parent for pre-defined coordinate ' 'system should be Cartesian.') lambda_lame = CoordSys3D._get_lame_coeff(trname) lambda_inverse = CoordSys3D._set_inv_trans_equations(trname) elif isinstance(transformation, Lambda): if not CoordSys3D._check_orthogonality(transformation): raise ValueError("The transformation equation does not " "create orthogonal coordinate system") lambda_transformation = transformation lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation) lambda_inverse = None else: lambda_transformation = lambda x, y, z: transformation(x, y, z) lambda_lame = CoordSys3D._get_lame_coeff(transformation) lambda_inverse = None if variable_names is None: if isinstance(transformation, Lambda): variable_names = ["x1", "x2", "x3"] elif isinstance(transformation, Symbol): if transformation.name is 'spherical': variable_names = ["r", "theta", "phi"] elif transformation.name is 'cylindrical': variable_names = ["r", "theta", "z"] else: variable_names = ["x", "y", "z"] else: variable_names = ["x", "y", "z"] if vector_names is None: vector_names = ["i", "j", "k"] # All systems that are defined as 'roots' are unequal, unless # they have the same name. # Systems defined at same orientation/position wrt the same # 'parent' are equal, irrespective of the name. # This is true even if the same orientation is provided via # different methods like Axis/Body/Space/Quaternion. # However, coincident systems may be seen as unequal if # positioned/oriented wrt different parents, even though # they may actually be 'coincident' wrt the root system. if parent is not None: obj = super(CoordSys3D, cls).__new__( cls, Symbol(name), transformation, parent) else: obj = super(CoordSys3D, cls).__new__( cls, Symbol(name), transformation) obj._name = name # Initialize the base vectors _check_strings('vector_names', vector_names) vector_names = list(vector_names) latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for x in vector_names] pretty_vects = [(name + '_' + x) for x in vector_names] obj._vector_names = vector_names v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0]) v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1]) v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2]) obj._base_vectors = (v1, v2, v3) # Initialize the base scalars _check_strings('variable_names', vector_names) variable_names = list(variable_names) latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for x in variable_names] pretty_scalars = [(name + '_' + x) for x in variable_names] obj._variable_names = variable_names obj._vector_names = vector_names x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0]) x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1]) x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2]) obj._base_scalars = (x1, x2, x3) obj._transformation = transformation obj._transformation_lambda = lambda_transformation obj._lame_coefficients = lambda_lame(x1, x2, x3) obj._transformation_from_parent_lambda = lambda_inverse setattr(obj, variable_names[0], x1) setattr(obj, variable_names[1], x2) setattr(obj, variable_names[2], x3) setattr(obj, vector_names[0], v1) setattr(obj, vector_names[1], v2) setattr(obj, vector_names[2], v3) # Assign params obj._parent = parent if obj._parent is not None: obj._root = obj._parent._root else: obj._root = obj obj._parent_rotation_matrix = rotation_matrix obj._origin = origin # Return the instance return obj def __str__(self, printer=None): return self._name __repr__ = __str__ _sympystr = __str__ def __iter__(self): return iter(self.base_vectors()) @staticmethod def _check_orthogonality(equations): """ Helper method for _connect_to_cartesian. It checks if set of transformation equations create orthogonal curvilinear coordinate system Parameters ========== equations : Lambda Lambda of transformation equations """ x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy) equations = equations(x1, x2, x3) v1 = Matrix([diff(equations[0], x1), diff(equations[1], x1), diff(equations[2], x1)]) v2 = Matrix([diff(equations[0], x2), diff(equations[1], x2), diff(equations[2], x2)]) v3 = Matrix([diff(equations[0], x3), diff(equations[1], x3), diff(equations[2], x3)]) if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)): return False else: if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \ and simplify(v3.dot(v1)) == 0: return True else: return False @staticmethod def _set_inv_trans_equations(curv_coord_name): """ Store information about inverse transformation equations for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if curv_coord_name == 'cartesian': return lambda x, y, z: (x, y, z) if curv_coord_name == 'spherical': return lambda x, y, z: ( sqrt(x**2 + y**2 + z**2), acos(z/sqrt(x**2 + y**2 + z**2)), atan2(y, x) ) if curv_coord_name == 'cylindrical': return lambda x, y, z: ( sqrt(x**2 + y**2), atan2(y, x), z ) raise ValueError('Wrong set of parameters.' 'Type of coordinate system is defined') def _calculate_inv_trans_equations(self): """ Helper method for set_coordinate_type. It calculates inverse transformation equations for given transformations equations. """ x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True) x, y, z = symbols("x, y, z", cls=Dummy) equations = self._transformation(x1, x2, x3) try: solved = solve([equations[0] - x, equations[1] - y, equations[2] - z], (x1, x2, x3), dict=True)[0] solved = solved[x1], solved[x2], solved[x3] self._transformation_from_parent_lambda = \ lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved) except: raise ValueError('Wrong set of parameters.') @staticmethod def _get_lame_coeff(curv_coord_name): """ Store information about Lame coefficients for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if isinstance(curv_coord_name, string_types): if curv_coord_name == 'cartesian': return lambda x, y, z: (S.One, S.One, S.One) if curv_coord_name == 'spherical': return lambda r, theta, phi: (S.One, r, r*sin(theta)) if curv_coord_name == 'cylindrical': return lambda r, theta, h: (S.One, r, S.One) raise ValueError('Wrong set of parameters.' ' Type of coordinate system is not defined') return CoordSys3D._calculate_lame_coefficients(curv_coord_name) @staticmethod def _calculate_lame_coeff(equations): """ It calculates Lame coefficients for given transformations equations. Parameters ========== equations : Lambda Lambda of transformation equations. """ return lambda x1, x2, x3: ( sqrt(diff(equations(x1, x2, x3)[0], x1)**2 + diff(equations(x1, x2, x3)[1], x1)**2 + diff(equations(x1, x2, x3)[2], x1)**2), sqrt(diff(equations(x1, x2, x3)[0], x2)**2 + diff(equations(x1, x2, x3)[1], x2)**2 + diff(equations(x1, x2, x3)[2], x2)**2), sqrt(diff(equations(x1, x2, x3)[0], x3)**2 + diff(equations(x1, x2, x3)[1], x3)**2 + diff(equations(x1, x2, x3)[2], x3)**2) ) def _inverse_rotation_matrix(self): """ Returns inverse rotation matrix. """ return simplify(self._parent_rotation_matrix**-1) @staticmethod def _get_transformation_lambdas(curv_coord_name): """ Store information about transformation equations for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if isinstance(curv_coord_name, string_types): if curv_coord_name == 'cartesian': return lambda x, y, z: (x, y, z) if curv_coord_name == 'spherical': return lambda r, theta, phi: ( r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta) ) if curv_coord_name == 'cylindrical': return lambda r, theta, h: ( r*cos(theta), r*sin(theta), h ) raise ValueError('Wrong set of parameters.' 'Type of coordinate system is defined') @classmethod def _rotation_trans_equations(cls, matrix, equations): """ Returns the transformation equations obtained from rotation matrix. Parameters ========== matrix : Matrix Rotation matrix equations : tuple Transformation equations """ return tuple(matrix * Matrix(equations)) @property def origin(self): return self._origin @property def delop(self): SymPyDeprecationWarning( feature="coord_system.delop has been replaced.", useinstead="Use the Del() class", deprecated_since_version="1.1", issue=12866, ).warn() from sympy.vector.deloperator import Del return Del() def base_vectors(self): return self._base_vectors def base_scalars(self): return self._base_scalars def lame_coefficients(self): return self._lame_coefficients def transformation_to_parent(self): return self._transformation_lambda(*self.base_scalars()) def transformation_from_parent(self): if self._parent is None: raise ValueError("no parent coordinate system, use " "`transformation_from_parent_function()`") return self._transformation_from_parent_lambda( *self._parent.base_scalars()) def transformation_from_parent_function(self): return self._transformation_from_parent_lambda
[docs] def rotation_matrix(self, other): """ Returns the direction cosine matrix(DCM), also known as the 'rotation matrix' of this coordinate system with respect to another system. If v_a is a vector defined in system 'A' (in matrix format) and v_b is the same vector defined in system 'B', then v_a = A.rotation_matrix(B) * v_b. A SymPy Matrix is returned. Parameters ========== other : CoordSys3D The system which the DCM is generated to. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = CoordSys3D('N') >>> A = N.orient_new_axis('A', q1, N.i) >>> N.rotation_matrix(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) """ from sympy.vector.functions import _path if not isinstance(other, CoordSys3D): raise TypeError(str(other) + " is not a CoordSys3D") # Handle special cases if other == self: return eye(3) elif other == self._parent: return self._parent_rotation_matrix elif other._parent == self: return other._parent_rotation_matrix.T # Else, use tree to calculate position rootindex, path = _path(self, other) result = eye(3) i = -1 for i in range(rootindex): result *= path[i]._parent_rotation_matrix i += 2 while i < len(path): result *= path[i]._parent_rotation_matrix.T i += 1 return result
[docs] @cacheit def position_wrt(self, other): """ Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D. Parameters ========== other : Point/CoordSys3D If other is a Point, the position of this system's origin wrt it is returned. If its an instance of CoordSyRect, the position wrt its origin is returned. Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> N1 = N.locate_new('N1', 10 * N.i) >>> N.position_wrt(N1) (-10)*N.i """ return self.origin.position_wrt(other)
[docs] def scalar_map(self, other): """ Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe. Parameters ========== otherframe : CoordSys3D The other system to map the variables to. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import Symbol >>> A = CoordSys3D('A') >>> q = Symbol('q') >>> B = A.orient_new_axis('B', q, A.k) >>> A.scalar_map(B) {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z} """ relocated_scalars = [] origin_coords = tuple(self.position_wrt(other).to_matrix(other)) for i, x in enumerate(other.base_scalars()): relocated_scalars.append(x - origin_coords[i]) vars_matrix = (self.rotation_matrix(other) * Matrix(relocated_scalars)) mapping = {} for i, x in enumerate(self.base_scalars()): mapping[x] = trigsimp(vars_matrix[i]) return mapping
[docs] def locate_new(self, name, position, vector_names=None, variable_names=None): """ Returns a CoordSys3D with its origin located at the given position wrt this coordinate system's origin. Parameters ========== name : str The name of the new CoordSys3D instance. position : Vector The position vector of the new system's origin wrt this one. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> A = CoordSys3D('A') >>> B = A.locate_new('B', 10 * A.i) >>> B.origin.position_wrt(A.origin) 10*A.i """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names return CoordSys3D(name, location=position, vector_names=vector_names, variable_names=variable_names, parent=self)
[docs] def orient_new(self, name, orienters, location=None, vector_names=None, variable_names=None): """ Creates a new CoordSys3D oriented in the user-specified way with respect to this system. Please refer to the documentation of the orienter classes for more information about the orientation procedure. Parameters ========== name : str The name of the new CoordSys3D instance. orienters : iterable/Orienter An Orienter or an iterable of Orienters for orienting the new coordinate system. If an Orienter is provided, it is applied to get the new system. If an iterable is provided, the orienters will be applied in the order in which they appear in the iterable. location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = CoordSys3D('N') Using an AxisOrienter >>> from sympy.vector import AxisOrienter >>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j) >>> A = N.orient_new('A', (axis_orienter, )) Using a BodyOrienter >>> from sympy.vector import BodyOrienter >>> body_orienter = BodyOrienter(q1, q2, q3, '123') >>> B = N.orient_new('B', (body_orienter, )) Using a SpaceOrienter >>> from sympy.vector import SpaceOrienter >>> space_orienter = SpaceOrienter(q1, q2, q3, '312') >>> C = N.orient_new('C', (space_orienter, )) Using a QuaternionOrienter >>> from sympy.vector import QuaternionOrienter >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3) >>> D = N.orient_new('D', (q_orienter, )) """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names if isinstance(orienters, Orienter): if isinstance(orienters, AxisOrienter): final_matrix = orienters.rotation_matrix(self) else: final_matrix = orienters.rotation_matrix() # TODO: trigsimp is needed here so that the matrix becomes # canonical (scalar_map also calls trigsimp; without this, you can # end up with the same CoordinateSystem that compares differently # due to a differently formatted matrix). However, this is # probably not so good for performance. final_matrix = trigsimp(final_matrix) else: final_matrix = Matrix(eye(3)) for orienter in orienters: if isinstance(orienter, AxisOrienter): final_matrix *= orienter.rotation_matrix(self) else: final_matrix *= orienter.rotation_matrix() return CoordSys3D(name, rotation_matrix=final_matrix, vector_names=vector_names, variable_names=variable_names, location=location, parent=self)
[docs] def orient_new_axis(self, name, angle, axis, location=None, vector_names=None, variable_names=None): """ Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector. Parameters ========== name : string The name of the new coordinate system angle : Expr The angle by which the new system is to be rotated axis : Vector The axis around which the rotation has to be performed location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = CoordSys3D('N') >>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j) """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names orienter = AxisOrienter(angle, axis) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names)
[docs] def orient_new_body(self, name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None): """ Body orientation takes this coordinate system through three successive simple rotations. Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see http://en.wikipedia.org/wiki/Euler_angles. Parameters ========== name : string The name of the new coordinate system angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSys3D('N') A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N, each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a '123' rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore, >>> D = N.orient_new_body('D', q1, q2, q3, '123') is same as >>> D = N.orient_new_axis('D', q1, N.i) >>> D = D.orient_new_axis('D', q2, D.j) >>> D = D.orient_new_axis('D', q3, D.k) Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row. >>> B = N.orient_new_body('B', q1, q2, q3, '123') >>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ') >>> B = N.orient_new_body('B', 0, 0, 0, 'XYX') """ orienter = BodyOrienter(angle1, angle2, angle3, rotation_order) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names)
[docs] def orient_new_space(self, name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None): """ Space rotation is similar to Body rotation, but the rotations are applied in the opposite order. Parameters ========== name : string The name of the new coordinate system angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. See Also ======== CoordSys3D.orient_new_body : method to orient via Euler angles Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSys3D('N') To orient a coordinate system D with respect to N, each sequential rotation is always about N's orthogonal unit vectors. For example, a '123' rotation will specify rotations about N.i, then N.j, then N.k. Therefore, >>> D = N.orient_new_space('D', q1, q2, q3, '312') is same as >>> B = N.orient_new_axis('B', q1, N.i) >>> C = B.orient_new_axis('C', q2, N.j) >>> D = C.orient_new_axis('D', q3, N.k) """ orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names)
[docs] def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None, vector_names=None, variable_names=None): """ Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta. This orientation is described by four parameters: q0 = cos(theta/2) q1 = lambda_x sin(theta/2) q2 = lambda_y sin(theta/2) q3 = lambda_z sin(theta/2) Quaternion does not take in a rotation order. Parameters ========== name : string The name of the new coordinate system q0, q1, q2, q3 : Expr The quaternions to rotate the coordinate system by location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = CoordSys3D('N') >>> B = N.orient_new_quaternion('B', q0, q1, q2, q3) """ orienter = QuaternionOrienter(q0, q1, q2, q3) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names)
[docs] def create_new(self, name, transformation, variable_names=None, vector_names=None): """ Returns a CoordSys3D which is connected to self by transformation. Parameters ========== name : str The name of the new CoordSys3D instance. transformation : Lambda, Tuple, str Transformation defined by transformation equations or chosen from predefined ones. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> a = CoordSys3D('a') >>> b = a.create_new('b', transformation='spherical') >>> b.transformation_to_parent() (b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta)) >>> b.transformation_from_parent() (sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x)) """ return CoordSys3D(name, parent=self, transformation=transformation, variable_names=variable_names, vector_names=vector_names)
[docs] def __init__(self, name, location=None, rotation_matrix=None, parent=None, vector_names=None, variable_names=None, latex_vects=None, pretty_vects=None, latex_scalars=None, pretty_scalars=None, transformation=None): # Dummy initializer for setting docstring pass
__init__.__doc__ = __new__.__doc__ @staticmethod def _compose_rotation_and_translation(rot, translation, parent): r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z)) if parent is None: return r dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()] t = lambda x, y, z: ( x + dx, y + dy, z + dz, ) return lambda x, y, z: t(*r(x, y, z))
def _check_strings(arg_name, arg): errorstr = arg_name + " must be an iterable of 3 string-types" if len(arg) != 3: raise ValueError(errorstr) for s in arg: if not isinstance(s, string_types): raise TypeError(errorstr)