Source code for sympy.printing.mathematica

"""
Mathematica code printer
"""

from __future__ import print_function, division
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.str import StrPrinter
from sympy.printing.precedence import precedence

# Used in MCodePrinter._print_Function(self)
known_functions = {
    "exp": [(lambda x: True, "Exp")],
    "log": [(lambda x: True, "Log")],
    "sin": [(lambda x: True, "Sin")],
    "cos": [(lambda x: True, "Cos")],
    "tan": [(lambda x: True, "Tan")],
    "cot": [(lambda x: True, "Cot")],
    "asin": [(lambda x: True, "ArcSin")],
    "acos": [(lambda x: True, "ArcCos")],
    "atan": [(lambda x: True, "ArcTan")],
    "sinh": [(lambda x: True, "Sinh")],
    "cosh": [(lambda x: True, "Cosh")],
    "tanh": [(lambda x: True, "Tanh")],
    "coth": [(lambda x: True, "Coth")],
    "sech": [(lambda x: True, "Sech")],
    "csch": [(lambda x: True, "Csch")],
    "asinh": [(lambda x: True, "ArcSinh")],
    "acosh": [(lambda x: True, "ArcCosh")],
    "atanh": [(lambda x: True, "ArcTanh")],
    "acoth": [(lambda x: True, "ArcCoth")],
    "asech": [(lambda x: True, "ArcSech")],
    "acsch": [(lambda x: True, "ArcCsch")],

}


[docs]class MCodePrinter(CodePrinter): """A printer to convert python expressions to strings of the Wolfram's Mathematica code """ printmethod = "_mcode" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, } _number_symbols = set() _not_supported = set() def __init__(self, settings={}): """Register function mappings supplied by user""" CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) for k, v in userfuncs.items(): if not isinstance(v, list): userfuncs[k] = [(lambda *x: True, v)] self.known_functions.update(userfuncs) doprint = StrPrinter.doprint def _print_Pow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Mul(self, expr): PREC = precedence(expr) c, nc = expr.args_cnc() res = super(MCodePrinter, self)._print_Mul(expr.func(*c)) if nc: res += '*' res += '**'.join(self.parenthesize(a, PREC) for a in nc) return res def _print_Pi(self, expr): return 'Pi' def _print_Infinity(self, expr): return 'Infinity' def _print_NegativeInfinity(self, expr): return '-Infinity' def _print_list(self, expr): return '{' + ', '.join(self.doprint(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_mfunc = self.known_functions[expr.func.__name__] for cond, mfunc in cond_mfunc: if cond(*expr.args): return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") def _print_Integral(self, expr): if len(expr.variables) == 1 and not expr.limits[0][1:]: args = [expr.args[0], expr.variables[0]] else: args = expr.args return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" def _print_Sum(self, expr): return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" def _print_Derivative(self, expr): return "Hold[D[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
[docs]def mathematica_code(expr, **settings): r"""Converts an expr to a string of the Wolfram Mathematica code Examples ======== >>> from sympy import mathematica_code as mcode, symbols, sin >>> x = symbols('x') >>> mcode(sin(x).series(x).removeO()) '(1/120)*x^5 - 1/6*x^3 + x' """ return MCodePrinter(settings).doprint(expr)