# Source code for sympy.simplify.sqrtdenest

from __future__ import print_function, division

from sympy.functions import sqrt, sign, root
from sympy.core import S, sympify, Mul, Add, Expr
from sympy.core.function import expand_mul
from sympy.core.compatibility import range
from sympy.core.symbol import Dummy
from sympy.polys import Poly, PolynomialError
from sympy.core.function import count_ops, _mexpand
from sympy.utilities import default_sort_key

def is_sqrt(expr):
"""Return True if expr is a sqrt, otherwise False."""

return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half

def sqrt_depth(p):
"""Return the maximum depth of any square root argument of p.

>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import sqrt_depth

Neither of these square roots contains any other square roots
so the depth is 1:

>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3)))
1

The sqrt(3) is contained within a square root so the depth is
2:

>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3)))
2
"""

if p.is_Atom:
return 0
elif p.is_Add or p.is_Mul:
return max([sqrt_depth(x) for x in p.args], key=default_sort_key)
elif is_sqrt(p):
return sqrt_depth(p.base) + 1
else:
return 0

def is_algebraic(p):
"""Return True if p is comprised of only Rationals or square roots
of Rationals and algebraic operations.

Examples
========

>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import is_algebraic
>>> from sympy import cos
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2))))
True
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2))))
False
"""

if p.is_Rational:
return True
elif p.is_Atom:
return False
elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer:
return is_algebraic(p.base)
elif p.is_Add or p.is_Mul:
return all(is_algebraic(x) for x in p.args)
else:
return False

def _subsets(n):
"""
Returns all possible subsets of the set (0, 1, ..., n-1) except the
empty set, listed in reversed lexicographical order according to binary
representation, so that the case of the fourth root is treated last.

Examples
========

>>> from sympy.simplify.sqrtdenest import _subsets
>>> _subsets(2)
[[1, 0], [0, 1], [1, 1]]

"""
if n == 1:
a = [[1]]
elif n == 2:
a = [[1, 0], [0, 1], [1, 1]]
elif n == 3:
a = [[1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
else:
b = _subsets(n - 1)
a0 = [x + [0] for x in b]
a1 = [x + [1] for x in b]
a = a0 + [[0]*(n - 1) + [1]] + a1
return a

[docs]def sqrtdenest(expr, max_iter=3):
"""Denests sqrts in an expression that contain other square roots
if possible, otherwise returns the expr unchanged. This is based on the
algorithms of [1].

Examples
========

>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> from sympy import sqrt
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
sqrt(2) + sqrt(3)

See Also
========
sympy.solvers.solvers.unrad

References
==========
[1] http://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf

[2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots
by Denesting' (available at http://www.cybertester.com/data/denest.pdf)

"""
expr = expand_mul(sympify(expr))
for i in range(max_iter):
z = _sqrtdenest0(expr)
if expr == z:
return expr
expr = z
return expr

def _sqrt_match(p):
"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
matching, sqrt(r) also has then maximal sqrt_depth among addends of p.

Examples
========

>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match
>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) +  2*sqrt(1+sqrt(5)))
[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
"""
from sympy.simplify.radsimp import split_surds

p = _mexpand(p)
if p.is_Number:
res = (p, S.Zero, S.Zero)
elif p.is_Add:
pargs = sorted(p.args, key=default_sort_key)
if all((x**2).is_Rational for x in pargs):
r, b, a = split_surds(p)
res = a, b, r
return list(res)
# to make the process canonical, the argument is included in the tuple
# so when the max is selected, it will be the largest arg having a
# given depth
v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
nmax = max(v, key=default_sort_key)
if nmax[0] == 0:
res = []
else:
# select r
depth, _, i = nmax
r = pargs.pop(i)
v.pop(i)
b = S.One
if r.is_Mul:
bv = []
rv = []
for x in r.args:
if sqrt_depth(x) < depth:
bv.append(x)
else:
rv.append(x)
b = Mul._from_args(bv)
r = Mul._from_args(rv)
# collect terms comtaining r
a1 = []
b1 = [b]
for x in v:
if x[0] < depth:
a1.append(x[1])
else:
x1 = x[1]
if x1 == r:
b1.append(1)
else:
if x1.is_Mul:
x1args = list(x1.args)
if r in x1args:
x1args.remove(r)
b1.append(Mul(*x1args))
else:
a1.append(x[1])
else:
a1.append(x[1])
a = Add(*a1)
b = Add(*b1)
res = (a, b, r**2)
else:
b, r = p.as_coeff_Mul()
if is_sqrt(r):
res = (S.Zero, b, r**2)
else:
res = []
return list(res)

class SqrtdenestStopIteration(StopIteration):
pass

def _sqrtdenest0(expr):
"""Returns expr after denesting its arguments."""

if is_sqrt(expr):
n, d = expr.as_numer_denom()
if d is S.One:  # n is a square root
if n.base.is_Add:
args = sorted(n.base.args, key=default_sort_key)
if len(args) > 2 and all((x**2).is_Integer for x in args):
try:
return _sqrtdenest_rec(n)
except SqrtdenestStopIteration:
pass
expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args])))
return _sqrtdenest1(expr)
else:
n, d = [_sqrtdenest0(i) for i in (n, d)]
return n/d

if isinstance(expr, Add):
cs = []
args = []
for arg in expr.args:
c, a = arg.as_coeff_Mul()
cs.append(c)
args.append(a)

if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args):
return _sqrt_ratcomb(cs, args)

if isinstance(expr, Expr):
args = expr.args
if args:
return expr.func(*[_sqrtdenest0(a) for a in args])
return expr

def _sqrtdenest_rec(expr):
"""Helper that denests the square root of three or more surds.

It returns the denested expression; if it cannot be denested it
throws SqrtdenestStopIteration

Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
split expr.base = a + b*sqrt(r_k), where a and b are on
Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
See [1], section 6.

Examples
========

>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
>>> _sqrtdenest_rec(sqrt(w))
-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
if not expr.is_Pow:
return sqrtdenest(expr)
if expr.base < 0:
return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
g, a, b = split_surds(expr.base)
a = a*sqrt(g)
if a < b:
a, b = b, a
c2 = _mexpand(a**2 - b**2)
if len(c2.args) > 2:
g, a1, b1 = split_surds(c2)
a1 = a1*sqrt(g)
if a1 < b1:
a1, b1 = b1, a1
c2_1 = _mexpand(a1**2 - b1**2)
c_1 = _sqrtdenest_rec(sqrt(c2_1))
d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
num, den = rad_rationalize(b1, d_1)
c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
else:
c = _sqrtdenest1(sqrt(c2))

if sqrt_depth(c) > 1:
raise SqrtdenestStopIteration
ac = a + c
if len(ac.args) >= len(expr.args):
if count_ops(ac) >= count_ops(expr.base):
raise SqrtdenestStopIteration
d = sqrtdenest(sqrt(ac))
if sqrt_depth(d) > 1:
raise SqrtdenestStopIteration
num, den = rad_rationalize(b, d)
r = d/sqrt(2) + num/(den*sqrt(2))
r = radsimp(r)
return _mexpand(r)

def _sqrtdenest1(expr, denester=True):
"""Return denested expr after denesting with simpler methods or, that
failing, using the denester."""

from sympy.simplify.simplify import radsimp

if not is_sqrt(expr):
return expr

a = expr.base
if a.is_Atom:
return expr
val = _sqrt_match(a)
if not val:
return expr

a, b, r = val
# try a quick numeric denesting
d2 = _mexpand(a**2 - b**2*r)
if d2.is_Rational:
if d2.is_positive:
z = _sqrt_numeric_denest(a, b, r, d2)
if z is not None:
return z
else:
# fourth root case
# sqrtdenest(sqrt(3 + 2*sqrt(3))) =
# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
dr2 = _mexpand(-d2*r)
dr = sqrt(dr2)
if dr.is_Rational:
z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
if z is not None:
return z/root(r, 4)

else:
z = _sqrt_symbolic_denest(a, b, r)
if z is not None:
return z

if not denester or not is_algebraic(expr):
return expr

res = sqrt_biquadratic_denest(expr, a, b, r, d2)
if res:
return res

# now call to the denester
av0 = [a, b, r, d2]
z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
if av0[1] is None:
return expr
if z is not None:
if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
return expr
return z
return expr

def _sqrt_symbolic_denest(a, b, r):
"""Given an expression, sqrt(a + b*sqrt(b)), return the denested
expression or None.

Algorithm:
If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in a with
(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).

Examples
========

>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
>>> from sympy import sqrt, Symbol
>>> from sympy.abc import x

>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
>>> _sqrt_symbolic_denest(a, b, r)
sqrt(-2*sqrt(29) + 11) + sqrt(5)

If the expression is numeric, it will be simplified:

>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
>>> sqrtdenest(sqrt((w**2).expand()))
1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))

Otherwise, it will only be simplified if assumptions allow:

>>> w = w.subs(sqrt(3), sqrt(x + 3))
>>> sqrtdenest(sqrt((w**2).expand()))
sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)

Notice that the argument of the sqrt is a square. If x is made positive
then the sqrt of the square is resolved:

>>> _.subs(x, Symbol('x', positive=True))
sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
"""

a, b, r = map(sympify, (a, b, r))
rval = _sqrt_match(r)
if not rval:
return None
ra, rb, rr = rval
if rb:
y = Dummy('y', positive=True)
try:
newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
except PolynomialError:
return None
if newa.degree() == 2:
ca, cb, cc = newa.all_coeffs()
cb += b
if _mexpand(cb**2 - 4*ca*cc).equals(0):
z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
if z.is_number:
z = _mexpand(Mul._from_args(z.as_content_primitive()))
return z

def _sqrt_numeric_denest(a, b, r, d2):
"""Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
or returns None if not denested.
"""
from sympy.simplify.simplify import radsimp
depthr = sqrt_depth(r)
d = sqrt(d2)
vad = a + d
# sqrt_depth(res) <= sqrt_depth(vad) + 1
# sqrt_depth(expr) = depthr + 2
# there is denesting if sqrt_depth(vad)+1 < depthr + 2
# if vad**2 is Number there is a fourth root
if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
vad1 = radsimp(1/vad)
return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()

def sqrt_biquadratic_denest(expr, a, b, r, d2):
"""denest expr = sqrt(a + b*sqrt(r))
where a, b, r are linear combinations of square roots of
positive rationals on the rationals (SQRR) and r > 0, b != 0,
d2 = a**2 - b**2*r > 0

If it cannot denest it returns None.

ALGORITHM
Search for a solution A of type SQRR of the biquadratic equation
4*A**4 - 4*a*A**2 + b**2*r = 0                               (1)
sqd = sqrt(a**2 - b**2*r)
Choosing the sqrt to be positive, the possible solutions are
A = sqrt(a/2 +/- sqd/2)
Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
so if sqd can be denested, it is done by
_sqrtdenest_rec, and the result is a SQRR.
Similarly for A.
Examples of solutions (in both cases a and sqd are positive):

Example of expr with solution sqrt(a/2 + sqd/2) but not
solution sqrt(a/2 - sqd/2):
expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)

Example of expr with solution sqrt(a/2 - sqd/2) but not
solution sqrt(a/2 + sqd/2):
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
expr = sqrt((w**2).expand())
a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
sqd = 29 + 20*sqrt(3)

Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2

Examples
========

>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
>>> a, b, r = _sqrt_match(z**2)
>>> d2 = a**2 - b**2*r
>>> sqrt_biquadratic_denest(z, a, b, r, d2)
sqrt(2) + sqrt(sqrt(2) + 2) + 2
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize
if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
return None
for x in (a, b, r):
for y in x.args:
y2 = y**2
if not y2.is_Integer or not y2.is_positive:
return None
sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
if sqrt_depth(sqd) > 1:
return None
x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
# look for a solution A with depth 1
for x in (x1, x2):
A = sqrtdenest(sqrt(x))
if sqrt_depth(A) > 1:
continue
Bn, Bd = rad_rationalize(b, _mexpand(2*A))
B = Bn/Bd
z = A + B*sqrt(r)
if z < 0:
z = -z
return _mexpand(z)
return None

def _denester(nested, av0, h, max_depth_level):
"""Denests a list of expressions that contain nested square roots.

Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

It is assumed that all of the elements of 'nested' share the same
bottom-level radicand. (This is stated in the paper, on page 177, in
the paragraph immediately preceding the algorithm.)

When evaluating all of the arguments in parallel, the bottom-level
radicand only needs to be denested once. This means that calling
_denester with x arguments results in a recursive invocation with x+1
arguments; hence _denester has polynomial complexity.

However, if the arguments were evaluated separately, each call would
result in two recursive invocations, and the algorithm would have
exponential complexity.

This is discussed in the paper in the middle paragraph of page 179.
"""
from sympy.simplify.simplify import radsimp
if h > max_depth_level:
return None, None
if av0[1] is None:
return None, None
if (av0[0] is None and
all(n.is_Number for n in nested)):  # no arguments are nested
for f in _subsets(len(nested)):  # test subset 'f' of nested
p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
if f.count(1) > 1 and f[-1]:
p = -p
sqp = sqrt(p)
if sqp.is_Rational:
return sqp, f  # got a perfect square so return its square root.
# Otherwise, return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
else:
R = None
if av0[0] is not None:
values = [av0[:2]]
R = av0[2]
nested2 = [av0[3], R]
av0[0] = None
else:
values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
for v in values:
if v[2]:  # Since if b=0, r is not defined
if R is not None:
if R != v[2]:
av0[1] = None
return None, None
else:
R = v[2]
if R is None:
# return the radicand from the previous invocation
return sqrt(nested[-1]), [0]*len(nested)
nested2 = [_mexpand(v[0]**2) -
_mexpand(R*v[1]**2) for v in values] + [R]
d, f = _denester(nested2, av0, h + 1, max_depth_level)
if not f:
return None, None
if not any(f[i] for i in range(len(nested))):
v = values[-1]
return sqrt(v[0] + _mexpand(v[1]*d)), f
else:
p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
v = _sqrt_match(p)
if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
v[0] = -v[0]
v[1] = -v[1]
if not f[len(nested)]:  # Solution denests with square roots
vad = _mexpand(v[0] + d)
if vad <= 0:
# return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
(vad**2).is_Number):
av0[1] = None
return None, None

sqvad = _sqrtdenest1(sqrt(vad), denester=False)
if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
av0[1] = None
return None, None
sqvad1 = radsimp(1/sqvad)
res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
return res, f

#          sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
else:  # Solution requires a fourth root
s2 = _mexpand(v[1]*R) + d
if s2 <= 0:
return sqrt(nested[-1]), [0]*len(nested)
FR, s = root(_mexpand(R), 4), sqrt(s2)
return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f

def _sqrt_ratcomb(cs, args):
"""Denest rational combinations of radicals.

Based on section 5 of [1].

Examples
========

>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
>>> sqrtdenest(z)
0
"""
from sympy.simplify.radsimp import radsimp

# check if there exists a pair of sqrt that can be denested
def find(a):
n = len(a)
for i in range(n - 1):
for j in range(i + 1, n):
s1 = a[i].base
s2 = a[j].base
p = _mexpand(s1 * s2)
s = sqrtdenest(sqrt(p))
if s != sqrt(p):
return s, i, j

indices = find(args)
if indices is None:
return Add(*[c * arg for c, arg in zip(cs, args)])

s, i1, i2 = indices

c2 = cs.pop(i2)
args.pop(i2)
a1 = args[i1]

# replace a2 by s/a1
cs[i1] += radsimp(c2 * s / a1.base)

return _sqrt_ratcomb(cs, args)