Source code for sympy.concrete.summations

from sympy.core import Add, C, Derivative, Dummy, Expr, S, sympify, Wild
from sympy.concrete.gosper import gosper_sum
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.polys import apart, PolynomialError
from sympy.solvers import solve

def _free_symbols(function, limits):
    """Helper function to return the symbols that appear in a sum-like object
    once it is evaluated.
    isyms = function.free_symbols
    for xab in limits:
        # take out the target symbol
        if xab[0] in isyms:
        # add in the new symbols
        for i in xab[1:]:
    return isyms

[docs]class Sum(Expr): """Represents unevaluated summation.""" __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): from sympy.integrals.integrals import _process_limits # Any embedded piecewise functions need to be brought out to the # top level so that integration can go into piecewise mode at the # earliest possible moment. function = piecewise_fold(sympify(function)) if function is S.NaN: return S.NaN if not symbols: raise ValueError("Summation variables must be given") limits, sign = _process_limits(*symbols) # Only limits with lower and upper bounds are supported; the indefinite Sum # is not supported if any(len(l) != 3 or None in l for l in limits): raise ValueError('Sum requires values for lower and upper bounds.') obj = Expr.__new__(cls, **assumptions) arglist = [sign*function] arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj @property def function(self): return self._args[0] @property def limits(self): return self._args[1:] @property
[docs] def variables(self): """Return a list of the summation variables >>> from sympy import Sum >>> from sympy.abc import x, i >>> Sum(x**i, (i, 1, 3)).variables [i] """ return [l[0] for l in self.limits]
[docs] def free_symbols(self): """ This method returns the symbols that will exist when the summation is evaluated. This is useful if one is trying to determine whether a sum depends on a certain symbol or not. >>> from sympy import Sum >>> from sympy.abc import x, y >>> Sum(x, (x, y, 1)).free_symbols set([y]) """ if self.function.is_zero: return set() return _free_symbols(self.function, self.limits)
[docs] def is_zero(self): """A Sum is only zero if its function is zero or if all terms cancel out. This only answers whether the summand zero.""" return self.function.is_zero
[docs] def is_number(self): """ Return True if the Sum will result in a number, else False. sympy considers anything that will result in a number to have is_number == True. >>> from sympy import log >>> log(2).is_number True Sums are a special case since they contain symbols that can be replaced with numbers. Whether the integral can be done or not is another issue. But answering whether the final result is a number is not difficult. >>> from sympy import Sum >>> from sympy.abc import x, y >>> Sum(x, (y, 1, x)).is_number False >>> Sum(1, (y, 1, x)).is_number False >>> Sum(0, (y, 1, x)).is_number True >>> Sum(x, (y, 1, 2)).is_number False >>> Sum(x, (y, 1, 1)).is_number False >>> Sum(x, (x, 1, 2)).is_number True >>> Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number True """ return self.function.is_zero or not self.free_symbols
def doit(self, **hints): #if not hints.get('sums', True): # return self f = self.function for limit in self.limits: i, a, b = limit dif = b - a if dif.is_Integer and dif < 0: a, b = b, a f = eval_sum(f, (i, a, b)) if f is None: return self if hints.get('deep', True): return f.doit(**hints) else: return f def _eval_summation(self, f, x): return def _eval_derivative(self, x): """ Differentiate wrt x as long as x is not in the free symbols of any of the upper or lower limits. Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a` since the value of the sum is discontinuous in `a`. In a case involving a limit variable, the unevaluated derivative is returned. """ # diff already confirmed that x is in the free symbols of self, but we # don't want to differentiate wrt any free symbol in the upper or lower # limits # XXX remove this test for free_symbols when the default _eval_derivative is in if x not in self.free_symbols: return S.Zero # get limits and the function f, limits = self.function, list(self.limits) limit = limits.pop(-1) if limits: # f is the argument to a Sum f = Sum(f, *limits) if len(limit) == 3: _, a, b = limit if x in a.free_symbols or x in b.free_symbols: return None df = Derivative(f, x, **{'evaluate': True}) rv = Sum(df, limit) if limit[0] not in df.free_symbols: rv = rv.doit() return rv else: return NotImplementedError('Lower and upper bound expected.')
[docs] def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): """ Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail. With m = n = 0, this is simply the corresponding integral plus a first-order endpoint correction. Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail): >>> from sympy.abc import k, a, b >>> from sympy import Sum >>> Sum(1/k, (k, 2, 5)).doit().evalf() 1.28333333333333 >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() >>> s -log(2) + 7/20 + log(5) >>> from sympy import sstr >>> print sstr((s.evalf(), e.evalf()), full_prec=True) (1.26629073187415, 0.0175000000000000) The endpoints may be symbolic: >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() >>> s -log(a) + log(b) + 1/(2*b) + 1/(2*a) >>> e Abs(-1/(12*b**2) + 1/(12*a**2)) If the function is a polynomial of degree at most 2n+1, the Euler-Maclaurin formula becomes exact (and e = 0 is returned): >>> Sum(k, (k, 2, b)).euler_maclaurin() (b**2/2 + b/2 - 1, 0) >>> Sum(k, (k, 2, b)).doit() b**2/2 + b/2 - 1 With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon. """ m = int(m) n = int(n) f = self.function assert len(self.limits) == 1 i, a, b = self.limits[0] s = S.Zero if m: for k in range(m): term = f.subs(i, a+k) if (eps and term and abs(term.evalf(3)) < eps): return s, abs(term) s += term a += m x = Dummy('x') I = C.Integral(f.subs(i, x), (x, a, b)) if eval_integral: I = I.doit() s += I def fpoint(expr): if b is S.Infinity: return expr.subs(i, a), 0 return expr.subs(i, a), expr.subs(i, b) fa, fb = fpoint(f) iterm = (fa + fb)/2 g = f.diff(i) for k in xrange(1, n+2): ga, gb = fpoint(g) term = C.bernoulli(2*k)/C.factorial(2*k)*(gb-ga) if (eps and term and abs(term.evalf(3)) < eps) or (k > n): break s += term g = g.diff(i, 2) return s + iterm, abs(term)
def _eval_subs(self, old, new): # XXX this should be the same as Integral's if any(old == v for v in self.variables): return self
[docs]def summation(f, *symbols, **kwargs): r""" Compute the summation of f with respect to symbols. The notation for symbols is similar to the notation used in Integral. summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, i.e., :: b ____ \ ` summation(f, (i, a, b)) = ) f /___, i = a If it cannot compute the sum, it returns an unevaluated Sum object. Repeated sums can be computed by introducing additional symbols tuples:: >>> from sympy import summation, oo, symbols, log >>> i, n, m = symbols('i n m', integer=True) >>> summation(2*i - 1, (i, 1, n)) n**2 >>> summation(1/2**i, (i, 0, oo)) 2 >>> summation(1/log(n)**n, (n, 2, oo)) Sum(log(n)**(-n), (n, 2, oo)) >>> summation(i, (i, 0, n), (n, 0, m)) m**3/6 + m**2/2 + m/3 >>> from sympy.abc import x >>> from sympy import factorial >>> summation(x**n/factorial(n), (n, 0, oo)) exp(x) """ return Sum(f, *symbols, **kwargs).doit(deep=False)
def telescopic_direct(L, R, n, limits): """Returns the direct summation of the terms of a telescopic sum L is the term with lower index R is the term with higher index n difference between the indexes of L and R For example: >>> from sympy.concrete.summations import telescopic_direct >>> from sympy.abc import k, a, b >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b)) -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a """ (i, a, b) = limits s = 0 for m in xrange(n): s += L.subs(i,a+m) + R.subs(i,b-m) return s def telescopic(L, R, limits): '''Tries to perform the summation using the telescopic property return None if not possible ''' (i, a, b) = limits if L.is_Add or R.is_Add: return None # We want to solve(L.subs(i, i + m) + R, m) # First we try a simple match since this does things that # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails k = Wild("k") sol = (-R).match(L.subs(i, i + k)) s = None if sol and k in sol: s = sol[k] if not (s.is_Integer and L.subs(i,i + s) == -R): #sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x})) s = None # But there are things that match doesn't do that solve # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1 if s is None: m = Dummy('m') try: sol = solve(L.subs(i, i + m) + R, m) or [] except NotImplementedError: return None sol = [si for si in sol if si.is_Integer and (L.subs(i,i + si) + R).expand().is_zero] if len(sol) != 1: return None s = sol[0] if s < 0: return telescopic_direct(R, L, abs(s), (i, a, b)) elif s > 0: return telescopic_direct(L, R, s, (i, a, b)) def eval_sum(f, limits): (i, a, b) = limits if f is S.Zero: return S.Zero if i not in f.free_symbols: return f*(b - a + 1) if a == b: return f.subs(i, a) dif = b - a definite = dif.is_Integer # Doing it directly may be faster if there are very few terms. if definite and (dif < 100): return eval_sum_direct(f, (i, a, b)) # Try to do it symbolically. Even when the number of terms is known, # this can save time when b-a is big. # We should try to transform to partial fractions value = eval_sum_symbolic(f.expand(), (i, a, b)) if value is not None: return value # Do it directly if definite: return eval_sum_direct(f, (i, a, b)) def eval_sum_direct(expr, limits): (i, a, b) = limits dif = b - a return Add(*[expr.subs(i, a + j) for j in xrange(dif + 1)]) def eval_sum_symbolic(f, limits): (i, a, b) = limits if not f.has(i): return f*(b-a+1) # Linearity if f.is_Mul: L, R = f.as_two_terms() if not L.has(i): sR = eval_sum_symbolic(R, (i, a, b)) if sR: return L*sR if not R.has(i): sL = eval_sum_symbolic(L, (i, a, b)) if sL: return R*sL try: f = apart(f, i) # see if it becomes an Add except PolynomialError: pass if f.is_Add: L, R = f.as_two_terms() lrsum = telescopic(L, R, (i, a, b)) if lrsum: return lrsum lsum = eval_sum_symbolic(L, (i, a, b)) rsum = eval_sum_symbolic(R, (i, a, b)) if None not in (lsum, rsum): return lsum + rsum # Polynomial terms with Faulhaber's formula n = Wild('n') result = f.match(i**n) if result is not None: n = result[n] if n.is_Integer: if n >= 0: return ((C.bernoulli(n+1, b+1) - C.bernoulli(n+1, a))/(n+1)).expand() elif a.is_Integer and a >= 1: if n == -1: return C.harmonic(b) - C.harmonic(a - 1) else: return C.harmonic(b, abs(n)) - C.harmonic(a - 1, abs(n)) # Geometric terms c1 = C.Wild('c1', exclude=[i]) c2 = C.Wild('c2', exclude=[i]) c3 = C.Wild('c3', exclude=[i]) e = f.match(c1**(c2*i+c3)) if e is not None: c1 = c1.subs(e) c2 = c2.subs(e) c3 = c3.subs(e) # TODO: more general limit handling return c1**c3 * (c1**(a*c2) - c1**(c2+b*c2)) / (1 - c1**c2) if not (a.has(S.Infinity, S.NegativeInfinity) or \ b.has(S.Infinity, S.NegativeInfinity)): r = gosper_sum(f, (i, a, b)) if not r in (None, S.NaN): return r return eval_sum_hyper(f, (i, a, b)) def _eval_sum_hyper(f, i, a): """ Returns (res, cond). Sums from a to oo. """ from sympy.functions import hyper from sympy.simplify import hyperexpand, hypersimp, fraction, simplify from sympy.polys.polytools import Poly, factor if a != 0: return _eval_sum_hyper(f.subs(i, i + a), i, 0) if f.subs(i, 0) == 0: if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: return S(0), True return _eval_sum_hyper(f.subs(i, i + 1), i, 0) hs = hypersimp(f, i) if hs is None: return None numer, denom = fraction(factor(hs)) top, topl = numer.as_coeff_mul(i) bot, botl = denom.as_coeff_mul(i) ab = [top, bot] factors = [topl, botl] params = [[], []] for k in range(2): for fac in factors[k]: mul = 1 if fac.is_Pow: mul = fac.exp fac = fac.base if not mul.is_Integer: return None p = Poly(fac, i) if p.degree() != 1: return None m, n = p.all_coeffs() ab[k] *= m**mul params[k] += [n/m]*mul # Add "1" to numerator parameters, to account for implicit n! in # hypergeometric series. ap = params[0] + [1] bq = params[1] x = ab[0]/ab[1] h = hyper(ap, bq, x) return f.subs(i, 0)*hyperexpand(h), h.convergence_statement def eval_sum_hyper(f, (i, a, b)): from sympy.functions import Piecewise from sympy import oo, And if b != oo: if a == -oo: res = _eval_sum_hyper(f.subs(i, -i), i, -b) if res is not None: return Piecewise(res, (Sum(f, (i, a, b)), True)) else: res1 = _eval_sum_hyper(f, i, a) res2 = _eval_sum_hyper(f, i, b + 1) if res1 is None or res2 is None: return None (res1, cond1), (res2, cond2) = res1, res2 cond = And(cond1, cond2) if cond is False: return None return Piecewise((res1 - res2, cond), (Sum(f, (i, a, b)), True)) if a == -oo: res1 = _eval_sum_hyper(f.subs(i, -i), i, 1) res2 = _eval_sum_hyper(f, i, 0) if res1 is None or res2 is None: return None res1, cond1 = res1 res2, cond2 = res2 cond = And(cond1, cond2) if cond is False: return None return Piecewise((res1 + res2, cond), (Sum(f, (i, a, b)), True)) # Now b == oo, a != -oo res = _eval_sum_hyper(f, i, a) if res is not None: return Piecewise(res, (Sum(f, (i, a, b)), True))