Source code for sympy.polys.domains.ring

"""Implementation of :class:`Ring` class. """

from __future__ import print_function, division

from sympy.polys.domains.domain import Domain
from sympy.polys.polyerrors import ExactQuotientFailed, NotInvertible, NotReversible

from sympy.utilities import public

[docs]class Ring(Domain): """Represents a ring domain. """ has_Ring = True
[docs] def get_ring(self): """Returns a ring associated with ``self``. """ return self
[docs] def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__floordiv__``. """ if a % b: raise ExactQuotientFailed(a, b, self) else: return a // b
[docs] def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__floordiv__``. """ return a // b
[docs] def rem(self, a, b): """Remainder of ``a`` and ``b``, implies ``__mod__``. """ return a % b
[docs] def div(self, a, b): """Division of ``a`` and ``b``, implies ``__divmod__``. """ return divmod(a, b)
[docs] def invert(self, a, b): """Returns inversion of ``a mod b``. """ s, t, h = self.gcdex(a, b) if self.is_one(h): return s % b else: raise NotInvertible("zero divisor")
[docs] def revert(self, a): """Returns ``a**(-1)`` if possible. """ if self.is_one(a): return a else: raise NotReversible('only unity is reversible in a ring')
def is_unit(self, a): try: self.revert(a) return True except NotReversible: return False
[docs] def numer(self, a): """Returns numerator of ``a``. """ return a
[docs] def denom(self, a): """Returns denominator of `a`. """ return self.one
[docs] def free_module(self, rank): """ Generate a free module of rank ``rank`` over self. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).free_module(2) QQ[x]**2 """ raise NotImplementedError
[docs] def ideal(self, *gens): """ Generate an ideal of ``self``. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).ideal(x**2) <x**2> """ from sympy.polys.agca.ideals import ModuleImplementedIdeal return ModuleImplementedIdeal(self, self.free_module(1).submodule( *[[x] for x in gens]))
[docs] def quotient_ring(self, e): """ Form a quotient ring of ``self``. Here ``e`` can be an ideal or an iterable. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).quotient_ring(QQ.old_poly_ring(x).ideal(x**2)) QQ[x]/<x**2> >>> QQ.old_poly_ring(x).quotient_ring([x**2]) QQ[x]/<x**2> The division operator has been overloaded for this: >>> QQ.old_poly_ring(x)/[x**2] QQ[x]/<x**2> """ from sympy.polys.agca.ideals import Ideal from sympy.polys.domains.quotientring import QuotientRing if not isinstance(e, Ideal): e = self.ideal(*e) return QuotientRing(self, e)
def __div__(self, e): return self.quotient_ring(e) __truediv__ = __div__