/

Source code for sympy.core.power

from __future__ import print_function, division

from math import log as _log

from .sympify import _sympify
from .cache import cacheit
from .core import C
from .singleton import S
from .expr import Expr

from sympy.core.function import (_coeff_isneg, expand_complex,
    expand_multinomial, expand_mul)
from sympy.core.logic import fuzzy_bool
from sympy.core.compatibility import as_int, xrange

from sympy.mpmath.libmp import sqrtrem as mpmath_sqrtrem
from sympy.utilities.iterables import sift


[docs]def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). >>> from sympy import integer_nthroot >>> integer_nthroot(16,2) (4, True) >>> integer_nthroot(26,2) (5, False) """ y, n = int(y), int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) #print n if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) #xprev, x = x, x - (t*x-y)//(n*t) xprev, x = x, ((n - 1)*x + y//t)//n #print n, x-xprev, abs(x-xprev) < 2 if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return x, t == y
[docs]class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | oo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient is some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | oo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== Infinity NegativeInfinity NaN References ========== .. [1] http://en.wikipedia.org/wiki/Exponentiation .. [2] http://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] http://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ['is_commutative'] @cacheit def __new__(cls, b, e, evaluate=True): from sympy.functions.elementary.exponential import exp_polar # don't optimize "if e==0; return 1" here; it's better to handle that # in the calling routine so this doesn't get called b = _sympify(b) e = _sympify(e) if evaluate: if e is S.Zero: return S.One elif e is S.One: return b elif b is S.One: if e in (S.NaN, S.Infinity, -S.Infinity): return S.NaN return S.One elif S.NaN in (b, e): return S.NaN else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and b.func is not exp_polar: from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if den.func is log and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj.is_commutative = (b.is_commutative and e.is_commutative) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_power(self, other): from sympy.functions.elementary.exponential import log b, e = self.as_base_exp() b_nneg = b.is_nonnegative if b.is_real and not b_nneg and e.is_even: b = abs(b) b_nneg = True # Special case for when b is nan. See pull req 1714 for details if b is S.NaN: smallarg = abs(e).is_negative else: smallarg = (abs(e) - abs(S.Pi/log(b))).is_negative if (other.is_Rational and other.q == 2 and e.is_real is False and smallarg is False): return -self.func(b, e*other) if (other.is_integer or e.is_real and (b_nneg or (abs(e) < 1) is True) or e.is_real is False and smallarg is True or b.is_polar): return self.func(b, e*other) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_positive(self): if self.base.is_positive: if self.exp.is_real: return True elif self.base.is_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_nonpositive: if self.exp.is_odd: return False def _eval_is_negative(self): if self.base.is_negative: if self.exp.is_odd: return True if self.exp.is_even: return False elif self.base.is_positive: if self.exp.is_real: return False elif self.base.is_nonnegative: if self.exp.is_real: return False elif self.base.is_nonpositive: if self.exp.is_even: return False elif self.base.is_real: if self.exp.is_even: return False def _eval_is_integer(self): b, e = self.args c1 = b.is_integer c2 = e.is_integer if c1 is None or c2 is None: return None if not c1 and e.is_nonnegative: # rat**nonneg return False if c1 and c2: # int**int if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if self.exp.is_negative: return False if c1 and e.is_negative and e.is_bounded: # int**neg return False if b.is_Number and e.is_Number: # int**nonneg or rat**? check = self.func(*self.args) return check.is_Integer def _eval_is_real(self): real_b = self.base.is_real if real_b is None: return real_e = self.exp.is_real if real_e is None: return if real_b and real_e: if self.base.is_positive: return True elif self.base.is_nonnegative: if self.exp.is_nonnegative: return True else: if self.exp.is_integer: return True elif self.base.is_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_negative: return Pow(self.base, -self.exp).is_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif (self.exp in [S.ImaginaryUnit, -S.ImaginaryUnit] and self.base in [S.ImaginaryUnit, -S.ImaginaryUnit]): return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return C.Mul( self.base**c, self.base**a, evaluate=False).is_real if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: ok = (c*C.log(self.base)/S.Pi).is_Integer if ok is not None: return ok def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_bounded(self): if self.exp.is_negative: if self.base.is_infinitesimal: return False if self.base.is_unbounded: return True c1 = self.base.is_bounded if c1 is None: return c2 = self.exp.is_bounded if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or self.base.is_nonzero: return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): if old.func is self.func and self.base == old.base: coeff1, terms1 = self.exp.as_independent(C.Symbol, as_Add=False) coeff2, terms2 = old.exp.as_independent(C.Symbol, as_Add=False) if terms1 == terms2: pow = coeff1/coeff2 ok = False # True if int(pow) == pow OR self.base.is_positive try: pow = as_int(pow) ok = True except ValueError: ok = self.base.is_positive if ok: # issue 2081 return self.func(new, pow) # (x**(6*y)).subs(x**(3*y),z)->z**2 if old.func is C.exp and self.exp.is_real and self.base.is_positive: coeff1, terms1 = old.args[0].as_independent(C.Symbol, as_Add=False) # we can only do this when the base is positive AND the exponent # is real coeff2, terms2 = (self.exp*C.log(self.base)).as_independent( C.Symbol, as_Add=False) if terms1 == terms2: pow = coeff1/coeff2 if pow == int(pow) or self.base.is_positive: return self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
[docs] def as_base_exp(self): """Return base and exp of self. If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1: return Integer(b.q), -e return b, e
def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose i, p = self.exp.is_integer, self.base.is_complex if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n+m) -> a**n*a**m""" b = self.base e = self.exp if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(self.base, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = 1/Mul(*nc*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_nonnegative) sifted = sift(cargs, pred) nonneg = sifted[True] other = sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a+b+..) ** n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re, im = self.base.as_real_imag(deep=deep) if not im: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re.is_Number and im.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re**2 + im**2 re, im = re/mag, -im/mag if re.is_Number and im.is_Number: # We can be more efficient in this case expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp) return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re, b: S.ImaginaryUnit*im}), im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im})) elif self.exp.is_Rational: # NOTE: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. re, im = self.base.as_real_imag(deep=deep) r = self.func(self.func(re, 2) + self.func(im, 2), S.Half) t = C.atan2(im, re) rp, tp = self.func(r, self.exp), t*self.exp return (rp*C.cos(tp), rp*C.sin(tp)) else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (C.re(expanded), C.im(expanded)) else: return (C.re(self), C.im(self)) def _eval_derivative(self, s): dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * C.log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_polynomial(syms) and \ self.exp.is_Integer and \ (self.exp >= 0) is True else: return True def _eval_is_rational(self): p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: return b.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = repl_dict.copy() d = self.exp.matches(S.Zero, d) if d is not None: return d b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). from sympy import powsimp, collect, exp, log, O, ceiling b, e = self.args if e.is_Integer: if e > 0: # positive integer powers are easy to expand, e.g.: # sin(x)**4 = (x-x**3/3+...)**4 = ... return expand_multinomial(self.func(b._eval_nseries(x, n=n, logx=logx), e), deep=False) elif e is S.NegativeOne: # this is also easy to expand using the formula: # 1/(1 + x) = 1 - x + x**2 - x**3 ... # so we need to rewrite base to the form "1+x" nuse = n cf = 1 try: ord = b.as_leading_term(x) cf = C.Order(ord, x).getn() if cf and cf.is_Number: nuse = n + 2*ceiling(cf) else: cf = 1 except NotImplementedError: pass b_orig, prefactor = b, O(1, x) while prefactor.is_Order: nuse += 1 b = b_orig._eval_nseries(x, n=nuse, logx=logx) prefactor = b.as_leading_term(x) # express "rest" as: rest = 1 + k*x**l + ... + O(x**n) rest = expand_mul((b - prefactor)/prefactor) if rest.is_Order: return 1/prefactor + rest/prefactor + O(x**n, x) k, l = rest.leadterm(x) if l.is_Rational and l > 0: pass elif l.is_number and l > 0: l = l.evalf() elif l == 0: k = k.simplify() if k == 0: # if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to # factor the w**4 out using collect: return 1/collect(prefactor, x) else: raise NotImplementedError() else: raise NotImplementedError() if cf < 0: cf = S.One/abs(cf) try: dn = C.Order(1/prefactor, x).getn() if dn and dn < 0: pass else: dn = 0 except NotImplementedError: dn = 0 terms = [1/prefactor] for m in xrange(1, ceiling((n - dn)/l*cf)): new_term = terms[-1]*(-rest) if new_term.is_Pow: new_term = new_term._eval_expand_multinomial( deep=False) else: new_term = expand_mul(new_term, deep=False) terms.append(new_term) terms.append(O(x**n, x)) return powsimp(Add(*terms), deep=True, combine='exp') else: # negative powers are rewritten to the cases above, for # example: # sin(x)**(-4) = 1/( sin(x)**4) = ... # and expand the denominator: nuse, denominator = n, O(1, x) while denominator.is_Order: denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx) nuse += 1 if 1/denominator == self: return self # now we have a type 1/f(x), that we know how to expand return (1/denominator)._eval_nseries(x, n=n, logx=logx) if e.has(Symbol): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx) # see if the base is as simple as possible bx = b while bx.is_Pow and bx.exp.is_Rational: bx = bx.base if bx == x: return self # work for b(x)**e where e is not an Integer and does not contain x # and hopefully has no other symbols def e2int(e): """return the integer value (if possible) of e and a flag indicating whether it is bounded or not.""" n = e.limit(x, 0) unbounded = n.is_unbounded if not unbounded: # XXX was int or floor intended? int used to behave like floor # so int(-Rational(1, 2)) returned -1 rather than int's 0 try: n = int(n) except TypeError: #well, the n is something more complicated (like 1+log(2)) try: n = int(n.evalf()) + 1 # XXX why is 1 being added? except TypeError: pass # hope that base allows this to be resolved n = _sympify(n) return n, unbounded order = O(x**n, x) ei, unbounded = e2int(e) b0 = b.limit(x, 0) if unbounded and (b0 is S.One or b0.has(Symbol)): # XXX what order if b0 is S.One: resid = (b - 1) if resid.is_positive: return S.Infinity elif resid.is_negative: return S.Zero raise ValueError('cannot determine sign of %s' % resid) return b0**ei if (b0 is S.Zero or b0.is_unbounded): if unbounded is not False: return b0**e # XXX what order if not ei.is_number: # if not, how will we proceed? raise ValueError( 'expecting numerical exponent but got %s' % ei) nuse = n - ei if e.is_real and e.is_positive: lt = b.as_leading_term(x) # Try to correct nuse (= m) guess from: # (lt + rest + O(x**m))**e = # lt**e*(1 + rest/lt + O(x**m)/lt)**e = # lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n) try: cf = C.Order(lt, x).getn() nuse = ceiling(n - cf*(e - 1)) except NotImplementedError: pass bs = b._eval_nseries(x, n=nuse, logx=logx) terms = bs.removeO() if terms.is_Add: bs = terms lt = terms.as_leading_term(x) # bs -> lt + rest -> lt*(1 + (bs/lt - 1)) return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries( x, n=nuse, logx=logx)).expand() + order) if bs.is_Add: from sympy import O # So, bs + O() == terms c = Dummy('c') res = [] for arg in bs.args: if arg.is_Order: arg = c*arg.expr res.append(arg) bs = Add(*res) rv = (bs**e).series(x).subs(c, O(1, x)) rv += order return rv rv = bs**e if terms != bs: rv += order return rv # either b0 is bounded but neither 1 nor 0 or e is unbounded # b -> b0 + (b-b0) -> b0 * (1 + (b/b0-1)) o2 = order*(b0**-e) z = (b/b0 - 1) o = O(z, x) #r = self._compute_oseries3(z, o2, self.taylor_term) if o is S.Zero or o2 is S.Zero: unbounded = True else: if o.expr.is_number: e2 = log(o2.expr*x)/log(x) else: e2 = log(o2.expr)/log(o.expr) n, unbounded = e2int(e2) if unbounded: # requested accuracy gives infinite series, # order is probably non-polynomial e.g. O(exp(-1/x), x). r = 1 + z else: l = [] g = None for i in xrange(n + 2): g = self._taylor_term(i, z, g) g = g.nseries(x, n=n, logx=logx) l.append(g) r = Add(*l) return expand_mul(r*b0**e) + order def _eval_as_leading_term(self, x): if not self.exp.has(x): return self.func(self.base.as_leading_term(x), self.exp) return C.exp(self.exp * C.log(self.base)).as_leading_term(x) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1+x)**e return C.binomial(self.exp, n) * self.func(x, n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_()
[docs] def as_content_primitive(self, radical=False): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical)) ce, pe = e.as_content_primitive(radical=radical) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh+r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e)
def is_constant(self, *wrt, **flags): if flags.get('simplify', True): self = self.simplify() b, e = self.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != self: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0)
from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols