/

# Assume¶

class sympy.assumptions.assume.AppliedPredicate[source]

The class of expressions resulting from applying a Predicate.

Examples

>>> from sympy import Q, Symbol
>>> x = Symbol('x')
>>> Q.integer(x)
Q.integer(x)
>>> type(Q.integer(x))
<class 'sympy.assumptions.assume.AppliedPredicate'>

arg[source]

Return the expression used by this assumption.

Examples

>>> from sympy import Q, Symbol
>>> x = Symbol('x')
>>> a = Q.integer(x + 1)
>>> a.arg
x + 1

class sympy.assumptions.assume.AssumptionsContext[source]

Set representing assumptions.

This is used to represent global assumptions, but you can also use this class to create your own local assumptions contexts. It is basically a thin wrapper to Python’s set, so see its documentation for advanced usage.

Examples

>>> from sympy import AppliedPredicate, Q
>>> from sympy.assumptions.assume import global_assumptions
>>> global_assumptions
AssumptionsContext()
>>> from sympy.abc import x
>>> global_assumptions.add(Q.real(x))
>>> global_assumptions
AssumptionsContext([Q.real(x)])
>>> global_assumptions.remove(Q.real(x))
>>> global_assumptions
AssumptionsContext()
>>> global_assumptions.clear()

add(*assumptions)[source]

Add an assumption.

class sympy.assumptions.assume.Predicate[source]

A predicate is a function that returns a boolean value.

Predicates merely wrap their argument and remain unevaluated:

>>> from sympy import Q, ask, Symbol, S
>>> x = Symbol('x')
>>> Q.prime(7)
Q.prime(7)


To obtain the truth value of an expression containing predicates, use the function $$ask$$:

>>> ask(Q.prime(7))
True


The tautological predicate $$Q.is_true$$ can be used to wrap other objects:

>>> Q.is_true(x > 1)
Q.is_true(x > 1)
>>> Q.is_true(S(1) < x)
Q.is_true(1 < x)

eval(expr, assumptions=True)[source]

Evaluate self(expr) under the given assumptions.

This uses only direct resolution methods, not logical inference.

sympy.assumptions.assume.assuming(*args, **kwds)[source]

Context manager for assumptions

Examples

>>> from sympy.assumptions import assuming, Q, ask
>>> from sympy.abc import x, y

>>> print(ask(Q.integer(x + y)))
None

>>> with assuming(Q.integer(x), Q.integer(y)):
...     print(ask(Q.integer(x + y)))
True


Ask

Refine