from __future__ import print_function, division

from collections import defaultdict
from functools import cmp_to_key

from .basic import Basic
from .compatibility import reduce, is_sequence, range
from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
from .singleton import S
from .operations import AssocOp
from .cache import cacheit
from .numbers import ilcm, igcd
from .expr import Expr

# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)

# in-place sorting of args
args.sort(key=_args_sortkey)

"""Return a well-formed unevaluated Add: Numbers are collected and
put in slot 0 and args are sorted. Use this when args have changed
but you still want to return an unevaluated Add.

Examples
========

>>> from sympy import S, Add
>>> from sympy.abc import x, y
>>> a = uAdd(*[S(1.0), x, S(2)])
>>> a.args[0]
3.00000000000000
>>> a.args[1]
x

Beyond the Number being in slot 0, there is no other assurance of
order for the arguments since they are hash sorted. So, for testing
purposes, output produced by this in some other function can only
be tested against the output of this function or as one of several
options:

>>> assert a in opts and a == uAdd(x, y)
>>> uAdd(x + 1, x + 2)
x + x + 3
"""
args = list(args)
newargs = []
co = S.Zero
while args:
a = args.pop()
# this will keep nesting from building up
# so that x + (x + 1) -> x + x + 1 (3 args)
args.extend(a.args)
elif a.is_Number:
co += a
else:
newargs.append(a)
if co:
newargs.insert(0, co)

__slots__ = []

[docs]    @classmethod
def flatten(cls, seq):
"""
Takes the sequence "seq" of nested Adds and returns a flatten list.

Returns: (commutative_part, noncommutative_part, order_symbols)

Applies associativity, all terms are commutable with respect to

NB: the removal of 0 is already handled by AssocOp.__new__

========

sympy.core.mul.Mul.flatten

"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
from sympy.tensor.tensor import TensExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
if a.is_Rational:
if b.is_Mul:
rv = [a, b], [], None
if rv:
if all(s.is_commutative for s in rv[0]):
return rv
return [], rv[0], None

terms = {}      # term -> coeff
# e.g. x**2 -> 5   for ... + 5*x**2 + ...

coeff = S.Zero  # coefficient (Number or zoo) to always be in slot 0
# e.g. 3 + ...
order_factors = []

for o in seq:

# O(x)
if o.is_Order:
for o1 in order_factors:
if o1.contains(o):
o = None
break
if o is None:
continue
order_factors = [o] + [
o1 for o1 in order_factors if not o.contains(o1)]
continue

# 3 or NaN
elif o.is_Number:
if (o is S.NaN or coeff is S.ComplexInfinity and
o.is_finite is False):
# we know for sure the result will be nan
return [S.NaN], [], None
if coeff.is_Number:
coeff += o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue

elif isinstance(o, AccumBounds):
continue

elif isinstance(o, MatrixExpr):
# can't add 0 to Matrix so make sure coeff is not 0
coeff = o.__add__(coeff) if coeff else o
continue

elif isinstance(o, TensExpr):
coeff = o.__add__(coeff) if coeff else o
continue

elif o is S.ComplexInfinity:
if coeff.is_finite is False:
# we know for sure the result will be nan
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue

# NB: here we assume Add is always commutative
seq.extend(o.args)  # TODO zerocopy?
continue

# Mul([...])
elif o.is_Mul:
c, s = o.as_coeff_Mul()

# check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
elif o.is_Pow:
b, e = o.as_base_exp()
if b.is_Number and (e.is_Integer or
(e.is_Rational and e.is_negative)):
seq.append(b**e)
continue
c, s = S.One, o

else:
# everything else
c = S.One
s = o

# now we have:
# o = c*s, where
#
# c is a Number
# s is an expression with number factor extracted
# let's collect terms with the same s, so e.g.
# 2*x**2 + 3*x**2  ->  5*x**2
if s in terms:
terms[s] += c
if terms[s] is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
else:
terms[s] = c

# now let's construct new args:
# [2*x**2, x**3, 7*x**4, pi, ...]
newseq = []
noncommutative = False
for s, c in terms.items():
# 0*s
if c is S.Zero:
continue
# 1*s
elif c is S.One:
newseq.append(s)
# c*s
else:
if s.is_Mul:
# Mul, already keeps its arguments in perfect order.
# so we can simply put c in slot0 and go the fast way.
cs = s._new_rawargs(*((c,) + s.args))
newseq.append(cs)
# we just re-create the unevaluated Mul
newseq.append(Mul(c, s, evaluate=False))
else:
# alternatively we have to call all Mul's machinery (slow)
newseq.append(Mul(c, s))

noncommutative = noncommutative or not s.is_commutative

# oo, -oo
if coeff is S.Infinity:
newseq = [f for f in newseq if not
(f.is_nonnegative or f.is_real and f.is_finite)]

elif coeff is S.NegativeInfinity:
newseq = [f for f in newseq if not
(f.is_nonpositive or f.is_real and f.is_finite)]

if coeff is S.ComplexInfinity:
# zoo might be
#   infinite_real + finite_im
#   finite_real + infinite_im
#   infinite_real + infinite_im
# addition of a finite real or imaginary number won't be able to
# change the zoo nature; adding an infinite qualtity would result
# in a NaN condition if it had sign opposite of the infinite
# portion of zoo, e.g., infinite_real - infinite_real.
newseq = [c for c in newseq if not (c.is_finite and
c.is_real is not None)]

# process O(x)
if order_factors:
newseq2 = []
for t in newseq:
for o in order_factors:
# x + O(x) -> O(x)
if o.contains(t):
t = None
break
# x + O(x**2) -> x + O(x**2)
if t is not None:
newseq2.append(t)
newseq = newseq2 + order_factors
# 1 + O(1) -> O(1)
for o in order_factors:
if o.contains(coeff):
coeff = S.Zero
break

# order args canonically

# current code expects coeff to be first
if coeff is not S.Zero:
newseq.insert(0, coeff)

# we are done
if noncommutative:
return [], newseq, None
else:
return newseq, [], None

[docs]    @classmethod
def class_key(cls):
"""Nice order of classes"""
return 3, 1, cls.__name__

[docs]    def as_coefficients_dict(a):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.

Examples
========

>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""

d = defaultdict(list)
for ai in a.args:
c, m = ai.as_coeff_Mul()
d[m].append(c)
for k, v in d.items():
if len(v) == 1:
d[k] = v[0]
else:
di = defaultdict(int)
di.update(d)
return di

[docs]    @cacheit
"""
Returns a tuple (coeff, args) where self is treated as an Add and coeff
is the Number term and args is a tuple of all other terms.

Examples
========

>>> from sympy.abc import x
(7, (3*x,))
(0, (7*x,))
"""
if deps:
l1 = []
l2 = []
for f in self.args:
if f.has(*deps):
l2.append(f)
else:
l1.append(f)
return self._new_rawargs(*l1), tuple(l2)
if coeff is not S.Zero:
return coeff, notrat + self.args[1:]
return S.Zero, self.args

"""Efficiently extract the coefficient of a summation. """
coeff, args = self.args[0], self.args[1:]

if coeff.is_Number and not rational or coeff.is_Rational:
return coeff, self._new_rawargs(*args)
return S.Zero, self

# Note, we intentionally do not implement Add.as_coeff_mul().  Rather, we
# let Expr.as_coeff_mul() just always return (S.One, self) for an Add.  See
# issue 5524.

def _eval_power(self, e):
if e.is_Rational and self.is_number:
from sympy.core.evalf import pure_complex
from sympy.core.mul import _unevaluated_Mul
from sympy.core.exprtools import factor_terms
from sympy.core.function import expand_multinomial
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.miscellaneous import sqrt
ri = pure_complex(self)
if ri:
r, i = ri
if e.q == 2:
D = sqrt(r**2 + i**2)
if D.is_Rational:
# (r, i, D) is a Pythagorean triple
root = sqrt(factor_terms((D - r)/2))**e.p
return root*expand_multinomial((
# principle value
(D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
elif e == -1:
return _unevaluated_Mul(
r - i*S.ImaginaryUnit,
1/(r**2 + i**2))

@cacheit
def _eval_derivative(self, s):
return self.func(*[a.diff(s) for a in self.args])

def _eval_nseries(self, x, n, logx):
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
return self.func(*terms)

def _matches_simple(self, expr, repl_dict):
# handle (w+3).matches('x+5') -> {w: x+2}
if len(terms) == 1:
return terms[0].matches(expr - coeff, repl_dict)
return

def matches(self, expr, repl_dict={}, old=False):
return AssocOp._matches_commutative(self, expr, repl_dict, old)

@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs - rhs, but treats oo like a symbol so oo - oo
returns 0, instead of a nan.
"""
from sympy.core.function import expand_mul
from sympy.core.symbol import Dummy
inf = (S.Infinity, S.NegativeInfinity)
if lhs.has(*inf) or rhs.has(*inf):
oo = Dummy('oo')
reps = {
S.Infinity: oo,
S.NegativeInfinity: -oo}
ireps = dict([(v, k) for k, v in reps.items()])
eq = expand_mul(lhs.xreplace(reps) - rhs.xreplace(reps))
if eq.has(oo):
eq = eq.replace(
lambda x: x.is_Pow and x.base == oo,
lambda x: x.base)
return eq.xreplace(ireps)
else:
return expand_mul(lhs - rhs)

[docs]    @cacheit
def as_two_terms(self):
"""Return head and tail of self.

This is the most efficient way to get the head and tail of an
expression.

- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
the arguments of the tail when treated as an Add.
- if you want the coefficient when self is treated as a Mul
then use self.as_coeff_mul()[0]

>>> from sympy.abc import x, y
>>> (3*x - 2*y + 5).as_two_terms()
(5, 3*x - 2*y)
"""
return self.args[0], self._new_rawargs(*self.args[1:])

def as_numer_denom(self):

# clear rational denominator
content, expr = self.primitive()
ncon, dcon = content.as_numer_denom()

# collect numerators and denominators of the terms
nd = defaultdict(list)
for f in expr.args:
ni, di = f.as_numer_denom()
nd[di].append(ni)

# check for quick exit
if len(nd) == 1:
d, n = nd.popitem()
return self.func(
*[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)

# sum up the terms having a common denominator
for d, n in nd.items():
if len(n) == 1:
nd[d] = n[0]
else:
nd[d] = self.func(*n)

# assemble single numerator and denominator
denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
for i in range(len(numers))]), Mul(*denoms)

return _keep_coeff(ncon, n), _keep_coeff(dcon, d)

def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)

def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)

def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)

# assumption methods
_eval_is_real = lambda self: _fuzzy_group(
(a.is_real for a in self.args), quick_exit=True)
_eval_is_complex = lambda self: _fuzzy_group(
(a.is_complex for a in self.args), quick_exit=True)
_eval_is_antihermitian = lambda self: _fuzzy_group(
(a.is_antihermitian for a in self.args), quick_exit=True)
_eval_is_finite = lambda self: _fuzzy_group(
(a.is_finite for a in self.args), quick_exit=True)
_eval_is_hermitian = lambda self: _fuzzy_group(
(a.is_hermitian for a in self.args), quick_exit=True)
_eval_is_integer = lambda self: _fuzzy_group(
(a.is_integer for a in self.args), quick_exit=True)
_eval_is_rational = lambda self: _fuzzy_group(
(a.is_rational for a in self.args), quick_exit=True)
_eval_is_algebraic = lambda self: _fuzzy_group(
(a.is_algebraic for a in self.args), quick_exit=True)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)

def _eval_is_imaginary(self):
nz = []
im_I = []
for a in self.args:
if a.is_real:
if a.is_zero:
pass
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im_I.append(a*S.ImaginaryUnit)
elif (S.ImaginaryUnit*a).is_real:
im_I.append(a*S.ImaginaryUnit)
else:
return
b = self.func(*nz)
if b.is_zero:
return fuzzy_not(self.func(*im_I).is_zero)
elif b.is_zero is False:
return False

def _eval_is_zero(self):
if self.is_commutative is False:
# issue 10528: there is no way to know if a nc symbol
# is zero or not
return
nz = []
z = 0
im_or_z = False
im = False
for a in self.args:
if a.is_real:
if a.is_zero:
z += 1
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im = True
elif (S.ImaginaryUnit*a).is_real:
im_or_z = True
else:
return
if z == len(self.args):
return True
if len(nz) == len(self.args):
return None
b = self.func(*nz)
if b.is_zero:
if not im_or_z and not im:
return True
if im and not im_or_z:
return False
if b.is_zero is False:
return False

def _eval_is_odd(self):
l = [f for f in self.args if not (f.is_even is True)]
if not l:
return False
if l[0].is_odd:
return self._new_rawargs(*l[1:]).is_even

def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all(x.is_rational is True for x in others):
return True
return None
if a is None:
return
return False

def _eval_is_positive(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_positive and a.is_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_positive:
return True
pos = nonneg = nonpos = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
ispos = a.is_positive
infinite = a.is_infinite
if infinite:
if True in saw_INF and False in saw_INF:
return
if ispos:
pos = True
continue
elif a.is_nonnegative:
nonneg = True
continue
elif a.is_nonpositive:
nonpos = True
continue

if infinite is None:
return
unknown_sign = True

if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonpos and not nonneg and pos:
return True
elif not nonpos and pos:
return True
elif not pos and not nonneg:
return False

def _eval_is_nonnegative(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
if not c.is_zero and a.is_nonnegative:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_nonnegative:
return True

def _eval_is_nonpositive(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
if not c.is_zero and a.is_nonpositive:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_nonpositive:
return True

def _eval_is_negative(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_negative and a.is_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_negative:
return True
neg = nonpos = nonneg = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
isneg = a.is_negative
infinite = a.is_infinite
if infinite:
if True in saw_INF and False in saw_INF:
return
if isneg:
neg = True
continue
elif a.is_nonpositive:
nonpos = True
continue
elif a.is_nonnegative:
nonneg = True
continue

if infinite is None:
return
unknown_sign = True

if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonneg and not nonpos and neg:
return True
elif not nonneg and neg:
return True
elif not neg and not nonpos:
return False

def _eval_subs(self, old, new):
if old is S.Infinity and -old in self.args:
# foo - oo is foo + (-oo) internally
return self.xreplace({-old: -new})
return None

if coeff_self.is_Rational and coeff_old.is_Rational:
if terms_self == terms_old:   # (2 + a).subs( 3 + a, y) -> -1 + y
return self.func(new, coeff_self, -coeff_old)
if terms_self == -terms_old:  # (2 + a).subs(-3 - a, y) -> -1 - y
return self.func(-new, coeff_self, coeff_old)

if coeff_self.is_Rational and coeff_old.is_Rational \
or coeff_self == coeff_old:
args_old, args_self = self.func.make_args(
terms_old), self.func.make_args(terms_self)
if len(args_old) < len(args_self):  # (a+b+c).subs(b+c,x) -> a+x
self_set = set(args_self)
old_set = set(args_old)

if old_set < self_set:
ret_set = self_set - old_set
return self.func(new, coeff_self, -coeff_old,
*[s._subs(old, new) for s in ret_set])

args_old = self.func.make_args(
-terms_old)     # (a+b+c+d).subs(-b-c,x) -> a-x+d
old_set = set(args_old)
if old_set < self_set:
ret_set = self_set - old_set
return self.func(-new, coeff_self, coeff_old,
*[s._subs(old, new) for s in ret_set])

def removeO(self):
args = [a for a in self.args if not a.is_Order]
return self._new_rawargs(*args)

def getO(self):
args = [a for a in self.args if a.is_Order]
if args:
return self._new_rawargs(*args)

[docs]    @cacheit
"""
Returns the leading term and its order.

Examples
========

>>> from sympy.abc import x
>>> (x + 1 + 1/x**5).extract_leading_order(x)
((x**(-5), O(x**(-5))),)
((1, O(1)),)
((x, O(x)),)

"""
from sympy import Order
lst = []
symbols = list(symbols if is_sequence(symbols) else [symbols])
if not point:
point = [0]*len(symbols)
seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
for ef, of in seq:
for e, o in lst:
if o.contains(of) and o != of:
of = None
break
if of is None:
continue
new_lst = [(ef, of)]
for e, o in lst:
if of.contains(o) and o != of:
continue
new_lst.append((e, o))
lst = new_lst
return tuple(lst)

[docs]    def as_real_imag(self, deep=True, **hints):
"""
returns a tuple representing a complex number

Examples
========

>>> from sympy import I
>>> (7 + 9*I).as_real_imag()
(7, 9)
>>> ((1 + I)/(1 - I)).as_real_imag()
(0, 1)
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
(-5, 5)
"""
sargs, terms = self.args, []
re_part, im_part = [], []
for term in sargs:
re, im = term.as_real_imag(deep=deep)
re_part.append(re)
im_part.append(im)
return (self.func(*re_part), self.func(*im_part))

from sympy import expand_mul, factor_terms

old = self

expr = expand_mul(self)

infinite = [t for t in expr.args if t.is_infinite]

expr = expr.func(*[t.as_leading_term(x) for t in expr.args]).removeO()
if not expr:
# simple leading term analysis gave us 0 but we have to send
# back a term, so compute the leading term (via series)
elif expr is S.NaN:
return old.func._from_args(infinite)
return expr
else:
plain = expr.func(*[s for s, _ in expr.extract_leading_order(x)])
rv = factor_terms(plain, fraction=False)
rv_simplify = rv.simplify()
# if it simplifies to an x-free expression, return that;
# tests don't fail if we don't but it seems nicer to do this
if x not in rv_simplify.free_symbols:
if rv_simplify.is_zero and plain.is_zero is not True:
return rv_simplify
return rv

return self.func(*[t.adjoint() for t in self.args])

def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])

def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args])

def __neg__(self):
return self*(-1)

def _sage_(self):
s = 0
for x in self.args:
s += x._sage_()
return s

[docs]    def primitive(self):
"""
Return (R, self/R) where R is the Rational GCD of self.

R is collected only from the leading coefficient of each term.

Examples
========

>>> from sympy.abc import x, y

>>> (2*x + 4*y).primitive()
(2, x + 2*y)

>>> (2*x/3 + 4*y/9).primitive()
(2/9, 3*x + 2*y)

>>> (2*x/3 + 4.2*y).primitive()
(1/3, 2*x + 12.6*y)

No subprocessing of term factors is performed:

>>> ((2 + 2*x)*x + 2).primitive()
(1, x*(2*x + 2) + 2)

Recursive processing can be done with the as_content_primitive()
method:

>>> ((2 + 2*x)*x + 2).as_content_primitive()
(2, x*(x + 1) + 1)

"""

terms = []
inf = False
for a in self.args:
c, m = a.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = a
inf = inf or m is S.ComplexInfinity
terms.append((c.p, c.q, m))

if not inf:
ngcd = reduce(igcd, [t[0] for t in terms], 0)
dlcm = reduce(ilcm, [t[1] for t in terms], 1)
else:
ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)

if ngcd == dlcm == 1:
return S.One, self
if not inf:
for i, (p, q, term) in enumerate(terms):
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
for i, (p, q, term) in enumerate(terms):
if q:
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
terms[i] = _keep_coeff(Rational(p, q), term)

# we don't need a complete re-flattening since no new terms will join
# so we just use the same sort as is used in Add.flatten. When the
# coefficient changes, the ordering of terms may change, e.g.
#     (3*x, 6*y) -> (2*y, x)
#
# We do need to make sure that term[0] stays in position 0, however.
#
if terms[0].is_Number or terms[0] is S.ComplexInfinity:
c = terms.pop(0)
else:
c = None
if c:
terms.insert(0, c)
return Rational(ngcd, dlcm), self._new_rawargs(*terms)

"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self. If radical is True (default is False) then
common radicals will be removed and included as a factor of the
primitive expression.

Examples
========

>>> from sympy import sqrt
>>> (3 + 3*sqrt(2)).as_content_primitive()
(3, 1 + sqrt(2))

Radical content can also be factored out of the primitive:

(2, sqrt(2)*(1 + 2*sqrt(5)))

See docstring of Expr.as_content_primitive for more examples.
"""
con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
if not clear and not con.is_Integer and prim.is_Add:
con, d = con.as_numer_denom()
_p = prim/d
if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
prim = _p
else:
con /= d
# look for common radicals that can be removed
args = prim.args
common_q = None
for m in args:
for ai in Mul.make_args(m):
if ai.is_Pow:
b, e = ai.as_base_exp()
if e.is_Rational and b.is_Integer:
break
if common_q is None:
else:
if not common_q:
break
else:
# keep only those in common_q
for q in list(r.keys()):
if q not in common_q:
r.pop(q)
for q in r:
r[q] = prod(r[q])
# find the gcd of bases for each q
G = []
for q in common_q:
g = reduce(igcd, [r[q] for r in rads], 0)
if g != 1:
G.append(g**Rational(1, q))
if G:
G = Mul(*G)
args = [ai/G for ai in args]
prim = G*prim.func(*args)

return con, prim

@property
def _sorted_args(self):
from sympy.core.compatibility import default_sort_key
return tuple(sorted(self.args, key=default_sort_key))

def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
return self.func(*[dd(a, n, step) for a in self.args])

@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float