Source code for sympy.stats.rv_interface

from __future__ import print_function, division

from .rv import (probability, expectation, density, where, given, pspace, cdf,
        characteristic_function, sample, sample_iter, random_symbols, independent, dependent,
        sampling_density, moment_generating_function)
from sympy import sqrt

__all__ = ['P', 'E', 'density', 'where', 'given', 'sample', 'cdf', 'characteristic_function', 'pspace',
        'sample_iter', 'variance', 'std', 'skewness', 'covariance',
        'dependent', 'independent', 'random_symbols', 'correlation',
        'moment', 'cmoment', 'sampling_density', 'moment_generating_function']



def moment(X, n, c=0, condition=None, **kwargs):
    """
    Return the nth moment of a random expression about c i.e. E((X-c)**n)
    Default value of c is 0.

    Examples
    ========

    >>> from sympy.stats import Die, moment, E
    >>> X = Die('X', 6)
    >>> moment(X, 1, 6)
    -5/2
    >>> moment(X, 2)
    91/6
    >>> moment(X, 1) == E(X)
    True
    """
    return expectation((X - c)**n, condition, **kwargs)


[docs]def variance(X, condition=None, **kwargs): """ Variance of a random expression Expectation of (X-E(X))**2 Examples ======== >>> from sympy.stats import Die, E, Bernoulli, variance >>> from sympy import simplify, Symbol >>> X = Die('X', 6) >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> variance(2*X) 35/3 >>> simplify(variance(B)) p*(-p + 1) """ return cmoment(X, 2, condition, **kwargs)
def standard_deviation(X, condition=None, **kwargs): """ Standard Deviation of a random expression Square root of the Expectation of (X-E(X))**2 Examples ======== >>> from sympy.stats import Bernoulli, std >>> from sympy import Symbol, simplify >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> simplify(std(B)) sqrt(p*(-p + 1)) """ return sqrt(variance(X, condition, **kwargs)) std = standard_deviation
[docs]def covariance(X, Y, condition=None, **kwargs): """ Covariance of two random expressions The expectation that the two variables will rise and fall together Covariance(X,Y) = E( (X-E(X)) * (Y-E(Y)) ) Examples ======== >>> from sympy.stats import Exponential, covariance >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> covariance(X, X) lambda**(-2) >>> covariance(X, Y) 0 >>> covariance(X, Y + rate*X) 1/lambda """ return expectation( (X - expectation(X, condition, **kwargs)) * (Y - expectation(Y, condition, **kwargs)), condition, **kwargs)
def correlation(X, Y, condition=None, **kwargs): """ Correlation of two random expressions, also known as correlation coefficient or Pearson's correlation The normalized expectation that the two variables will rise and fall together Correlation(X,Y) = E( (X-E(X)) * (Y-E(Y)) / (sigma(X) * sigma(Y)) ) Examples ======== >>> from sympy.stats import Exponential, correlation >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> correlation(X, X) 1 >>> correlation(X, Y) 0 >>> correlation(X, Y + rate*X) 1/sqrt(1 + lambda**(-2)) """ return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs) * std(Y, condition, **kwargs)) def cmoment(X, n, condition=None, **kwargs): """ Return the nth central moment of a random expression about its mean i.e. E((X - E(X))**n) Examples ======== >>> from sympy.stats import Die, cmoment, variance >>> X = Die('X', 6) >>> cmoment(X, 3) 0 >>> cmoment(X, 2) 35/12 >>> cmoment(X, 2) == variance(X) True """ mu = expectation(X, condition, **kwargs) return moment(X, n, mu, condition, **kwargs) def smoment(X, n, condition=None, **kwargs): """ Return the nth Standardized moment of a random expression i.e. E( ((X - mu)/sigma(X))**n ) Examples ======== >>> from sympy.stats import skewness, Exponential, smoment >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> smoment(Y, 4) 9 >>> smoment(Y, 4) == smoment(3*Y, 4) True >>> smoment(Y, 3) == skewness(Y) True """ sigma = std(X, condition, **kwargs) return (1/sigma)**n*cmoment(X, n, condition, **kwargs) def skewness(X, condition=None, **kwargs): """ Measure of the asymmetry of the probability distribution Positive skew indicates that most of the values lie to the right of the mean skewness(X) = E( ((X - E(X))/sigma)**3 ) Examples ======== >>> from sympy.stats import skewness, Exponential, Normal >>> from sympy import Symbol >>> X = Normal('X', 0, 1) >>> skewness(X) 0 >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> skewness(Y) 2 """ return smoment(X, 3, condition, **kwargs) P = probability E = expectation