Docstrings for basic field functions¶
Field operation functions¶
These functions implement some basic operations pertaining to fields in general.
- sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]¶
Returns the curl of a vector field computed wrt the coordinate symbols of the given frame.
- Parameters:
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the curl in
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import curl >>> R = ReferenceFrame('R') >>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z >>> curl(v1, R) 0 >>> v2 = R[0]*R[1]*R[2]*R.x >>> curl(v2, R) R_x*R_y*R.y - R_x*R_z*R.z
- sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]¶
Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame.
- Parameters:
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the divergence in
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import divergence >>> R = ReferenceFrame('R') >>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z) >>> divergence(v1, R) R_x*R_y + R_x*R_z + R_y*R_z >>> v2 = 2*R[1]*R[2]*R.y >>> divergence(v2, R) 2*R_z
- sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]¶
Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame.
- Parameters:
scalar : sympifiable
The scalar field to take the gradient of
frame : ReferenceFrame
The frame to calculate the gradient in
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import gradient >>> R = ReferenceFrame('R') >>> s1 = R[0]*R[1]*R[2] >>> gradient(s1, R) R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z >>> s2 = 5*R[0]**2*R[2] >>> gradient(s2, R) 10*R_x*R_z*R.x + 5*R_x**2*R.z
- sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]¶
Returns the scalar potential function of a field in a given frame (without the added integration constant).
- Parameters:
field : Vector
The vector field whose scalar potential function is to be calculated
frame : ReferenceFrame
The frame to do the calculation in
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import scalar_potential, gradient >>> R = ReferenceFrame('R') >>> scalar_potential(R.z, R) == R[2] True >>> scalar_field = 2*R[0]**2*R[1]*R[2] >>> grad_field = gradient(scalar_field, R) >>> scalar_potential(grad_field, R) 2*R_x**2*R_y*R_z
- sympy.physics.vector.fieldfunctions.scalar_potential_difference(field, frame, point1, point2, origin)[source]¶
Returns the scalar potential difference between two points in a certain frame, wrt a given field.
If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used.
Returns (potential at position 2) - (potential at position 1)
- Parameters:
field : Vector/sympyfiable
The field to calculate wrt
frame : ReferenceFrame
The frame to do the calculations in
point1 : Point
The initial Point in given frame
position2 : Point
The second Point in the given frame
origin : Point
The Point to use as reference point for position vector calculation
Examples
>>> from sympy.physics.vector import ReferenceFrame, Point >>> from sympy.physics.vector import scalar_potential_difference >>> R = ReferenceFrame('R') >>> O = Point('O') >>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z) >>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y >>> scalar_potential_difference(vectfield, R, O, P, O) 2*R_x**2*R_y >>> Q = O.locatenew('O', 3*R.x + R.y + 2*R.z) >>> scalar_potential_difference(vectfield, R, P, Q, O) -2*R_x**2*R_y + 18
Checking the type of vector field¶
- sympy.physics.vector.fieldfunctions.is_conservative(field)[source]¶
Checks if a field is conservative.
- Parameters:
field : Vector
The field to check for conservative property
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import is_conservative >>> R = ReferenceFrame('R') >>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) True >>> is_conservative(R[2] * R.y) False
- sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]¶
Checks if a field is solenoidal.
- Parameters:
field : Vector
The field to check for solenoidal property
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import is_solenoidal >>> R = ReferenceFrame('R') >>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) True >>> is_solenoidal(R[1] * R.y) False