Polynomials Manipulation Module Reference¶
Polynomial manipulation algorithms and algebraic objects.
See Polynomial Manipulation for an index of documentation for the polys module and Basic functionality of the module for an introductory explanation.
Basic polynomial manipulation functions¶
- sympy.polys.polytools.poly(expr, *gens, **args)[source]¶
Efficiently transform an expression into a polynomial.
Examples
>>> from sympy import poly >>> from sympy.abc import x
>>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
- sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]¶
Construct a polynomial from an expression.
- sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]¶
Construct polynomials from expressions.
- sympy.polys.polytools.degree(f, gen=0)[source]¶
Return the degree of
f
in the given variable.The degree of 0 is negative infinity.
Examples
>>> from sympy import degree >>> from sympy.abc import x, y
>>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo
- sympy.polys.polytools.degree_list(f, *gens, **args)[source]¶
Return a list of degrees of
f
in all variables.Examples
>>> from sympy import degree_list >>> from sympy.abc import x, y
>>> degree_list(x**2 + y*x + 1) (2, 1)
- sympy.polys.polytools.LC(f, *gens, **args)[source]¶
Return the leading coefficient of
f
.Examples
>>> from sympy import LC >>> from sympy.abc import x, y
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4
- sympy.polys.polytools.LM(f, *gens, **args)[source]¶
Return the leading monomial of
f
.Examples
>>> from sympy import LM >>> from sympy.abc import x, y
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2
- sympy.polys.polytools.LT(f, *gens, **args)[source]¶
Return the leading term of
f
.Examples
>>> from sympy import LT >>> from sympy.abc import x, y
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2
- sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]¶
Compute polynomial pseudo-division of
f
andg
.Examples
>>> from sympy import pdiv >>> from sympy.abc import x
>>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20)
- sympy.polys.polytools.prem(f, g, *gens, **args)[source]¶
Compute polynomial pseudo-remainder of
f
andg
.Examples
>>> from sympy import prem >>> from sympy.abc import x
>>> prem(x**2 + 1, 2*x - 4) 20
- sympy.polys.polytools.pquo(f, g, *gens, **args)[source]¶
Compute polynomial pseudo-quotient of
f
andg
.Examples
>>> from sympy import pquo >>> from sympy.abc import x
>>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1
- sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]¶
Compute polynomial exact pseudo-quotient of
f
andg
.Examples
>>> from sympy import pexquo >>> from sympy.abc import x
>>> pexquo(x**2 - 1, 2*x - 2) 2*x + 2
>>> pexquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
- sympy.polys.polytools.div(f, g, *gens, **args)[source]¶
Compute polynomial division of
f
andg
.Examples
>>> from sympy import div, ZZ, QQ >>> from sympy.abc import x
>>> div(x**2 + 1, 2*x - 4, domain=ZZ) (0, x**2 + 1) >>> div(x**2 + 1, 2*x - 4, domain=QQ) (x/2 + 1, 5)
- sympy.polys.polytools.rem(f, g, *gens, **args)[source]¶
Compute polynomial remainder of
f
andg
.Examples
>>> from sympy import rem, ZZ, QQ >>> from sympy.abc import x
>>> rem(x**2 + 1, 2*x - 4, domain=ZZ) x**2 + 1 >>> rem(x**2 + 1, 2*x - 4, domain=QQ) 5
- sympy.polys.polytools.quo(f, g, *gens, **args)[source]¶
Compute polynomial quotient of
f
andg
.Examples
>>> from sympy import quo >>> from sympy.abc import x
>>> quo(x**2 + 1, 2*x - 4) x/2 + 1 >>> quo(x**2 - 1, x - 1) x + 1
- sympy.polys.polytools.exquo(f, g, *gens, **args)[source]¶
Compute polynomial exact quotient of
f
andg
.Examples
>>> from sympy import exquo >>> from sympy.abc import x
>>> exquo(x**2 - 1, x - 1) x + 1
>>> exquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
- sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]¶
Half extended Euclidean algorithm of
f
andg
.Returns
(s, h)
such thath = gcd(f, g)
ands*f = h (mod g)
.Examples
>>> from sympy import half_gcdex >>> from sympy.abc import x
>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x + 1)
- sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]¶
Extended Euclidean algorithm of
f
andg
.Returns
(s, t, h)
such thath = gcd(f, g)
ands*f + t*g = h
.Examples
>>> from sympy import gcdex >>> from sympy.abc import x
>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)
- sympy.polys.polytools.invert(f, g, *gens, **args)[source]¶
Invert
f
modulog
when possible.Examples
>>> from sympy import invert, S, mod_inverse >>> from sympy.abc import x
>>> invert(x**2 - 1, 2*x - 1) -4/3
>>> invert(x**2 - 1, x - 1) Traceback (most recent call last): ... NotInvertible: zero divisor
For more efficient inversion of Rationals, use the
sympy.core.intfunc.mod_inverse
function:>>> mod_inverse(3, 5) 2 >>> (S(2)/5).invert(S(7)/3) 5/2
See also
- sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]¶
Compute subresultant PRS of
f
andg
.Examples
>>> from sympy import subresultants >>> from sympy.abc import x
>>> subresultants(x**2 + 1, x**2 - 1) [x**2 + 1, x**2 - 1, -2]
- sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]¶
Compute resultant of
f
andg
.Examples
>>> from sympy import resultant >>> from sympy.abc import x
>>> resultant(x**2 + 1, x**2 - 1) 4
- sympy.polys.polytools.discriminant(f, *gens, **args)[source]¶
Compute discriminant of
f
.Examples
>>> from sympy import discriminant >>> from sympy.abc import x
>>> discriminant(x**2 + 2*x + 3) -8
- sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]¶
Remove GCD of terms from
f
.If the
deep
flag is True, then the arguments off
will have terms_gcd applied to them.If a fraction is factored out of
f
andf
is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hintclear
, when set to False, can be used to prevent such factoring when all coefficients are not fractions.Examples
>>> from sympy import terms_gcd, cos >>> from sympy.abc import x, y >>> terms_gcd(x**6*y**2 + x**3*y, x, y) x**3*y*(x**3*y + 1)
The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior:
>>> terms_gcd((3+3*x)*(x+x*y)) 3*x*(x*y + x + y + 1)
If this is not desired then the hint
expand
can be set to False. In this case the expression will be treated as though it were comprised of one or more terms:>>> terms_gcd((3+3*x)*(x+x*y), expand=False) (3*x + 3)*(x*y + x)
In order to traverse factors of a Mul or the arguments of other functions, the
deep
hint can be used:>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True) 3*x*(x + 1)*(y + 1) >>> terms_gcd(cos(x + x*y), deep=True) cos(x*(y + 1))
Rationals are factored out by default:
>>> terms_gcd(x + y/2) (2*x + y)/2
Only the y-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag
clear
can be set to False:>>> terms_gcd(x + y/2, clear=False) x + y/2 >>> terms_gcd(x*y/2 + y**2, clear=False) y*(x/2 + y)
The
clear
flag is ignored if all coefficients are fractions:>>> terms_gcd(x/3 + y/2, clear=False) (2*x + 3*y)/6
- sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]¶
Compute GCD and cofactors of
f
andg
.Returns polynomials
(h, cff, cfg)
such thath = gcd(f, g)
, andcff = quo(f, h)
andcfg = quo(g, h)
are, so called, cofactors off
andg
.Examples
>>> from sympy import cofactors >>> from sympy.abc import x
>>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2)
- sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]¶
Compute GCD of
f
andg
.Examples
>>> from sympy import gcd >>> from sympy.abc import x
>>> gcd(x**2 - 1, x**2 - 3*x + 2) x - 1
- sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]¶
Compute GCD of a list of polynomials.
Examples
>>> from sympy import gcd_list >>> from sympy.abc import x
>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1
- sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]¶
Compute LCM of
f
andg
.Examples
>>> from sympy import lcm >>> from sympy.abc import x
>>> lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2
- sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]¶
Compute LCM of a list of polynomials.
Examples
>>> from sympy import lcm_list >>> from sympy.abc import x
>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2
- sympy.polys.polytools.trunc(f, p, *gens, **args)[source]¶
Reduce
f
modulo a constantp
.Examples
>>> from sympy import trunc >>> from sympy.abc import x
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1
- sympy.polys.polytools.monic(f, *gens, **args)[source]¶
Divide all coefficients of
f
byLC(f)
.Examples
>>> from sympy import monic >>> from sympy.abc import x
>>> monic(3*x**2 + 4*x + 2) x**2 + 4*x/3 + 2/3
- sympy.polys.polytools.content(f, *gens, **args)[source]¶
Compute GCD of coefficients of
f
.Examples
>>> from sympy import content >>> from sympy.abc import x
>>> content(6*x**2 + 8*x + 12) 2
- sympy.polys.polytools.primitive(f, *gens, **args)[source]¶
Compute content and the primitive form of
f
.Examples
>>> from sympy.polys.polytools import primitive >>> from sympy.abc import x
>>> primitive(6*x**2 + 8*x + 12) (2, 3*x**2 + 4*x + 6)
>>> eq = (2 + 2*x)*x + 2
Expansion is performed by default:
>>> primitive(eq) (2, x**2 + x + 1)
Set
expand
to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction.>>> primitive(eq, expand=False) (1, x*(2*x + 2) + 2)
>>> eq.as_content_primitive() (2, x*(x + 1) + 1)
- sympy.polys.polytools.compose(f, g, *gens, **args)[source]¶
Compute functional composition
f(g)
.Examples
>>> from sympy import compose >>> from sympy.abc import x
>>> compose(x**2 + x, x - 1) x**2 - x
- sympy.polys.polytools.decompose(f, *gens, **args)[source]¶
Compute functional decomposition of
f
.Examples
>>> from sympy import decompose >>> from sympy.abc import x
>>> decompose(x**4 + 2*x**3 - x - 1) [x**2 - x - 1, x**2 + x]
- sympy.polys.polytools.sturm(f, *gens, **args)[source]¶
Compute Sturm sequence of
f
.Examples
>>> from sympy import sturm >>> from sympy.abc import x
>>> sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]
- sympy.polys.polytools.gff_list(f, *gens, **args)[source]¶
Compute a list of greatest factorial factors of
f
.Note that the input to ff() and rf() should be Poly instances to use the definitions here.
Examples
>>> from sympy import gff_list, ff, Poly >>> from sympy.abc import x
>>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)
>>> gff_list(f) [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
>>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f True
>>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - 1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)
>>> gff_list(f) [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]
>>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f True
- sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]¶
Compute square-free norm of
f
.Returns
s
,f
,r
, such thatg(x) = f(x-sa)
andr(x) = Norm(g(x))
is a square-free polynomial overK
, wherea
is the algebraic extension of the ground domain.Examples
>>> from sympy import sqf_norm, sqrt >>> from sympy.abc import x
>>> sqf_norm(x**2 + 1, extension=[sqrt(3)]) ([1], x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
- sympy.polys.polytools.sqf_part(f, *gens, **args)[source]¶
Compute square-free part of
f
.Examples
>>> from sympy import sqf_part >>> from sympy.abc import x
>>> sqf_part(x**3 - 3*x - 2) x**2 - x - 2
- sympy.polys.polytools.sqf_list(f, *gens, **args)[source]¶
Compute a list of square-free factors of
f
.Examples
>>> from sympy import sqf_list >>> from sympy.abc import x
>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) (2, [(x + 1, 2), (x + 2, 3)])
- sympy.polys.polytools.sqf(f, *gens, **args)[source]¶
Compute square-free factorization of
f
.Examples
>>> from sympy import sqf >>> from sympy.abc import x
>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(x + 1)**2*(x + 2)**3
- sympy.polys.polytools.factor_list(f, *gens, **args)[source]¶
Compute a list of irreducible factors of
f
.Examples
>>> from sympy import factor_list >>> from sympy.abc import x, y
>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (x**2 + 1, 2)])
- sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]¶
Compute the factorization of expression,
f
, into irreducibles. (To factor an integer into primes, usefactorint
.)There two modes implemented: symbolic and formal. If
f
is not an instance ofPoly
and generators are not specified, then the former mode is used. Otherwise, the formal mode is used.In symbolic mode,
factor()
will traverse the expression tree and factor its components without any prior expansion, unless an instance ofAdd
is encountered (in this case formal factorization is used). This wayfactor()
can handle large or symbolic exponents.By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options:
extension
,modulus
ordomain
.Examples
>>> from sympy import factor, sqrt, exp >>> from sympy.abc import x, y
>>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) 2*(x + y)*(x**2 + 1)**2
>>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, gaussian=True) (x - I)*(x + I)
>>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2))
>>> factor((x**2 - 1)/(x**2 + 4*x + 4)) (x - 1)*(x + 1)/(x + 2)**2 >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1)) (x + 2)**20000000*(x**2 + 1)
By default, factor deals with an expression as a whole:
>>> eq = 2**(x**2 + 2*x + 1) >>> factor(eq) 2**(x**2 + 2*x + 1)
If the
deep
flag is True then subexpressions will be factored:>>> factor(eq, deep=True) 2**((x + 1)**2)
If the
fraction
flag is False then rational expressions will not be combined. By default it is True.>>> factor(5*x + 3*exp(2 - 7*x), deep=True) (5*x*exp(7*x) + 3*exp(2))*exp(-7*x) >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False) 5*x + 3*exp(2)*exp(-7*x)
See also
- sympy.polys.polytools.intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False)[source]¶
Compute isolating intervals for roots of
f
.Examples
>>> from sympy import intervals >>> from sympy.abc import x
>>> intervals(x**2 - 3) [((-2, -1), 1), ((1, 2), 1)] >>> intervals(x**2 - 3, eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
- sympy.polys.polytools.refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False)[source]¶
Refine an isolating interval of a root to the given precision.
Examples
>>> from sympy import refine_root >>> from sympy.abc import x
>>> refine_root(x**2 - 3, 1, 2, eps=1e-2) (19/11, 26/15)
- sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]¶
Return the number of roots of
f
in[inf, sup]
interval.If one of
inf
orsup
is complex, it will return the number of roots in the complex rectangle with corners atinf
andsup
.Examples
>>> from sympy import count_roots, I >>> from sympy.abc import x
>>> count_roots(x**4 - 4, -3, 3) 2 >>> count_roots(x**4 - 4, 0, 1 + 3*I) 1
- sympy.polys.polytools.all_roots(f, multiple=True, radicals=True)[source]¶
Returns the real and complex roots of
f
with multiplicities.- Parameters:
-
A univariate polynomial with rational (or
Float
) coefficients.multiple :
bool
(defaultTrue
).Whether to return a
list
of roots or a list of root/multiplicity pairs.radicals :
bool
(defaultTrue
)Use simple radical formulae rather than
ComplexRootOf
for some irrational roots. - Returns:
A list of
Expr
(usuallyComplexRootOf
) representingthe roots is returned with each root repeated according to its multiplicity
as a root of
f
. The roots are always uniquely ordered with real rootscoming before complex roots. The real roots are in increasing order.
Complex roots are ordered by increasing real part and then increasing
imaginary part.
If
multiple=False
is passed then a list of root/multiplicity pairs isreturned instead.
If
radicals=False
is passed then all roots will be represented aseither rational numbers or
ComplexRootOf
.
Explanation
Finds all real and complex roots of a univariate polynomial with rational coefficients of any degree exactly. The roots are represented in the form given by
rootof()
. This is equivalent to usingrootof()
to find each of the indexed roots.Examples
>>> from sympy import all_roots >>> from sympy.abc import x, y
>>> print(all_roots(x**3 + 1)) [-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2]
Simple radical formulae are used in some cases but the cubic and quartic formulae are avoided. Instead most non-rational roots will be represented as
ComplexRootOf
:>>> print(all_roots(x**3 + x + 1)) [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)]
All roots of any polynomial with rational coefficients of any degree can be represented using
ComplexRootOf
. The use ofComplexRootOf
bypasses limitations on the availability of radical formulae for quintic and higher degree polynomials _[1]:>>> p = x**5 - x - 1 >>> for r in all_roots(p): print(r) CRootOf(x**5 - x - 1, 0) CRootOf(x**5 - x - 1, 1) CRootOf(x**5 - x - 1, 2) CRootOf(x**5 - x - 1, 3) CRootOf(x**5 - x - 1, 4) >>> [r.evalf(3) for r in all_roots(p)] [1.17, -0.765 - 0.352*I, -0.765 + 0.352*I, 0.181 - 1.08*I, 0.181 + 1.08*I]
Irrational algebraic or transcendental coefficients cannot currently be handled by
all_roots()
(orrootof()
more generally):>>> from sympy import sqrt, expand >>> p = expand((x - sqrt(2))*(x - sqrt(3))) >>> print(p) x**2 - sqrt(3)*x - sqrt(2)*x + sqrt(6) >>> all_roots(p) Traceback (most recent call last): ... NotImplementedError: sorted roots not supported over EX
In the case of algebraic or transcendental coefficients
ground_roots()
might be able to find some roots by factorisation:>>> from sympy import ground_roots >>> ground_roots(p, x, extension=True) {sqrt(2): 1, sqrt(3): 1}
If the coefficients are numeric then
nroots()
can be used to find all roots approximately:>>> from sympy import nroots >>> nroots(p, 5) [1.4142, 1.732]
If the coefficients are symbolic then
sympy.polys.polyroots.roots()
orground_roots()
should be used instead:>>> from sympy import roots, ground_roots >>> p = x**2 - 3*x*y + 2*y**2 >>> roots(p, x) {y: 1, 2*y: 1} >>> ground_roots(p, x) {y: 1, 2*y: 1}
See also
Poly.all_roots
The underlying
Poly
method used byall_roots()
.rootof
Compute a single numbered root of a univariate polynomial.
real_roots
Compute all the real roots using
rootof()
.ground_roots
Compute some roots in the ground domain by factorisation.
nroots
Compute all roots using approximate numerical techniques.
sympy.polys.polyroots.roots
Compute symbolic expressions for roots using radical formulae.
References
- sympy.polys.polytools.real_roots(f, multiple=True, radicals=True)[source]¶
Returns the real roots of
f
with multiplicities.- Parameters:
-
A univariate polynomial with rational (or
Float
) coefficients.multiple :
bool
(defaultTrue
).Whether to return a
list
of roots or a list of root/multiplicity pairs.radicals :
bool
(defaultTrue
)Use simple radical formulae rather than
ComplexRootOf
for some irrational roots. - Returns:
A list of
Expr
(usuallyComplexRootOf
) representingthe real roots is returned. The roots are arranged in increasing order and
are repeated according to their multiplicities as roots of
f
.If
multiple=False
is passed then a list of root/multiplicity pairs isreturned instead.
If
radicals=False
is passed then all roots will be represented aseither rational numbers or
ComplexRootOf
.
Explanation
Finds all real roots of a univariate polynomial with rational coefficients of any degree exactly. The roots are represented in the form given by
rootof()
. This is equivalent to usingrootof()
orall_roots()
and filtering out only the real roots. However if only the real roots are needed thenreal_roots()
is more efficient thanall_roots()
because it computes only the real roots and avoids costly complex root isolation routines.Examples
>>> from sympy import real_roots >>> from sympy.abc import x, y
>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4) [-1/2, 2, 2] >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4, multiple=False) [(-1/2, 1), (2, 2)]
Real roots of any polynomial with rational coefficients of any degree can be represented using
ComplexRootOf
:>>> p = x**9 + 2*x + 2 >>> print(real_roots(p)) [CRootOf(x**9 + 2*x + 2, 0)] >>> [r.evalf(3) for r in real_roots(p)] [-0.865]
All rational roots will be returned as rational numbers. Roots of some simple factors will be expressed using radical or other formulae (unless
radicals=False
is passed). All other roots will be expressed asComplexRootOf
.>>> p = (x + 7)*(x**2 - 2)*(x**3 + x + 1) >>> print(real_roots(p)) [-7, -sqrt(2), CRootOf(x**3 + x + 1, 0), sqrt(2)] >>> print(real_roots(p, radicals=False)) [-7, CRootOf(x**2 - 2, 0), CRootOf(x**3 + x + 1, 0), CRootOf(x**2 - 2, 1)]
All returned root expressions will numerically evaluate to real numbers with no imaginary part. This is in contrast to the expressions generated by the cubic or quartic formulae as used by
roots()
which suffer from casus irreducibilis [R809]:>>> from sympy import roots >>> p = 2*x**3 - 9*x**2 - 6*x + 3 >>> [r.evalf(5) for r in roots(p, multiple=True)] [5.0365 - 0.e-11*I, 0.33984 + 0.e-13*I, -0.87636 + 0.e-10*I] >>> [r.evalf(5) for r in real_roots(p, x)] [-0.87636, 0.33984, 5.0365] >>> [r.is_real for r in roots(p, multiple=True)] [None, None, None] >>> [r.is_real for r in real_roots(p)] [True, True, True]
Using
real_roots()
is equivalent to usingall_roots()
(orrootof()
) and filtering out only the real roots:>>> from sympy import all_roots >>> r = [r for r in all_roots(p) if r.is_real] >>> real_roots(p) == r True
If only the real roots are wanted then using
real_roots()
is faster than usingall_roots()
. Usingreal_roots()
avoids complex root isolation which can be a lot slower than real root isolation especially for polynomials of high degree which typically have many more complex roots than real roots.Irrational algebraic or transcendental coefficients cannot be handled by
real_roots()
(orrootof()
more generally):>>> from sympy import sqrt, expand >>> p = expand((x - sqrt(2))*(x - sqrt(3))) >>> print(p) x**2 - sqrt(3)*x - sqrt(2)*x + sqrt(6) >>> real_roots(p) Traceback (most recent call last): ... NotImplementedError: sorted roots not supported over EX
In the case of algebraic or transcendental coefficients
ground_roots()
might be able to find some roots by factorisation:>>> from sympy import ground_roots >>> ground_roots(p, x, extension=True) {sqrt(2): 1, sqrt(3): 1}
If the coefficients are numeric then
nroots()
can be used to find all roots approximately:>>> from sympy import nroots >>> nroots(p, 5) [1.4142, 1.732]
If the coefficients are symbolic then
sympy.polys.polyroots.roots()
orground_roots()
should be used instead.>>> from sympy import roots, ground_roots >>> p = x**2 - 3*x*y + 2*y**2 >>> roots(p, x) {y: 1, 2*y: 1} >>> ground_roots(p, x) {y: 1, 2*y: 1}
See also
Poly.real_roots
The underlying
Poly
method used byreal_roots()
.rootof
Compute a single numbered root of a univariate polynomial.
all_roots
Compute all real and non-real roots using
rootof()
.ground_roots
Compute some roots in the ground domain by factorisation.
nroots
Compute all roots using approximate numerical techniques.
sympy.polys.polyroots.roots
Compute symbolic expressions for roots using radical formulae.
References
- sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]¶
Compute numerical approximations of roots of
f
.Examples
>>> from sympy import nroots >>> from sympy.abc import x
>>> nroots(x**2 - 3, n=15) [-1.73205080756888, 1.73205080756888] >>> nroots(x**2 - 3, n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151]
- sympy.polys.polytools.ground_roots(f, *gens, **args)[source]¶
Compute roots of
f
by factorization in the ground domain.Examples
>>> from sympy import ground_roots >>> from sympy.abc import x
>>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2) {0: 2, 1: 2}
- sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]¶
Construct a polynomial with n-th powers of roots of
f
.Examples
>>> from sympy import nth_power_roots_poly, factor, roots >>> from sympy.abc import x
>>> f = x**4 - x**2 + 1 >>> g = factor(nth_power_roots_poly(f, 2))
>>> g (x**2 - x + 1)**2
>>> R_f = [ (r**2).expand() for r in roots(f) ] >>> R_g = roots(g).keys()
>>> set(R_f) == set(R_g) True
- sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]¶
Cancel common factors in a rational function
f
.Examples
>>> from sympy import cancel, sqrt, Symbol, together >>> from sympy.abc import x >>> A = Symbol('A', commutative=False)
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1)) (2*x + 2)/(x - 1) >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A)) sqrt(6)/2
Note: due to automatic distribution of Rationals, a sum divided by an integer will appear as a sum. To recover a rational form use \(together\) on the result:
>>> cancel(x/2 + 1) x/2 + 1 >>> together(_) (x + 2)/2
- sympy.polys.polytools.reduced(f, G, *gens, **args)[source]¶
Reduces a polynomial
f
modulo a set of polynomialsG
.Given a polynomial
f
and a set of polynomialsG = (g_1, ..., g_n)
, computes a set of quotientsq = (q_1, ..., q_n)
and the remainderr
such thatf = q_1*g_1 + ... + q_n*g_n + r
, wherer
vanishes orr
is a completely reduced polynomial with respect toG
.Examples
>>> from sympy import reduced >>> from sympy.abc import x, y
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y]) ([2*x, 1], x**2 + y**2 + y)
- sympy.polys.polytools.groebner(F, *gens, **args)[source]¶
Computes the reduced Groebner basis for a set of polynomials.
Use the
order
argument to set the monomial ordering that will be used to compute the basis. Allowed orders arelex
,grlex
andgrevlex
. If no order is specified, it defaults tolex
.For more information on Groebner bases, see the references and the docstring of
solve_poly_system()
.Examples
Example taken from [1].
>>> from sympy import groebner >>> from sympy.abc import x, y
>>> F = [x*y - 2*y, 2*y**2 - x**2]
>>> groebner(F, x, y, order='lex') GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, order='grlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex') >>> groebner(F, x, y, order='grevlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex')
By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using the
method
flag or with thesympy.polys.polyconfig.setup()
function.>>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]
>>> groebner(F, x, y, method='buchberger') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, method='f5b') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
References
- sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]¶
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the leading monomial of any element of
F
is bounded.References
David A. Cox, John B. Little, Donal O’Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230
- class sympy.polys.polytools.Poly(rep, *gens, **args)[source]¶
Generic class for representing and operating on polynomial expressions.
See Polynomial Manipulation for general documentation.
Poly is a subclass of Basic rather than Expr but instances can be converted to Expr with the
as_expr()
method.Deprecated since version 1.6: Combining Poly with non-Poly objects in binary operations is deprecated. Explicitly convert both objects to either Poly or Expr first. See Mixing Poly and non-polynomial expressions in binary operations.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
Create a univariate polynomial:
>>> Poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
Create a univariate polynomial with specific domain:
>>> from sympy import sqrt >>> Poly(x**2 + 2*x + sqrt(3), domain='R') Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')
Create a multivariate polynomial:
>>> Poly(y*x**2 + x*y + 1) Poly(x**2*y + x*y + 1, x, y, domain='ZZ')
Create a univariate polynomial, where y is a constant:
>>> Poly(y*x**2 + x*y + 1,x) Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')
You can evaluate the above polynomial as a function of y:
>>> Poly(y*x**2 + x*y + 1,x).eval(2) 6*y + 1
See also
- EC(order=None)[source]¶
Returns the last non-zero coefficient of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).EC() 3
- EM(order=None)[source]¶
Returns the last non-zero monomial of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM() x**0*y**1
- ET(order=None)[source]¶
Returns the last non-zero term of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET() (x**0*y**1, 3)
- LC(order=None)[source]¶
Returns the leading coefficient of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC() 4
- LM(order=None)[source]¶
Returns the leading monomial of
f
.The Leading monomial signifies the monomial having the highest power of the principal generator in the expression f.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM() x**2*y**0
- LT(order=None)[source]¶
Returns the leading term of
f
.The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT() (x**2*y**0, 4)
- TC()[source]¶
Returns the trailing coefficient of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).TC() 0
- abs()[source]¶
Make all coefficients in
f
positive.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).abs() Poly(x**2 + 1, x, domain='ZZ')
- add(g)[source]¶
Add two polynomials
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).add(Poly(x - 2, x)) Poly(x**2 + x - 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x) + Poly(x - 2, x) Poly(x**2 + x - 1, x, domain='ZZ')
- add_ground(coeff)[source]¶
Add an element of the ground domain to
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x + 1).add_ground(2) Poly(x + 3, x, domain='ZZ')
- all_coeffs()[source]¶
Returns all coefficients from a univariate polynomial
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_coeffs() [1, 0, 2, -1]
- all_monoms()[source]¶
Returns all monomials from a univariate polynomial
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_monoms() [(3,), (2,), (1,), (0,)]
See also
- all_roots(multiple=True, radicals=True)[source]¶
Return a list of real and complex roots with multiplicities.
See
all_roots()
for more explanation.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).all_roots() [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)]
- all_terms()[source]¶
Returns all terms from a univariate polynomial
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_terms() [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]
- as_dict(native=False, zero=False)[source]¶
Switch to a
dict
representation.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict() {(0, 1): -1, (1, 2): 2, (2, 0): 1}
- as_expr(*gens)[source]¶
Convert a Poly instance to an Expr instance.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = Poly(x**2 + 2*x*y**2 - y, x, y)
>>> f.as_expr() x**2 + 2*x*y**2 - y >>> f.as_expr({x: 5}) 10*y**2 - y + 25 >>> f.as_expr(5, 6) 379
- as_poly(*gens, **args)[source]¶
Converts
self
to a polynomial or returnsNone
.>>> from sympy import sin >>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y)) None
- cancel(g, include=False)[source]¶
Cancel common factors in a rational function
f/g
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x)) (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True) (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
- clear_denoms(convert=False)[source]¶
Clear denominators, but keep the ground domain.
Examples
>>> from sympy import Poly, S, QQ >>> from sympy.abc import x
>>> f = Poly(x/2 + S(1)/3, x, domain=QQ)
>>> f.clear_denoms() (6, Poly(3*x + 2, x, domain='QQ')) >>> f.clear_denoms(convert=True) (6, Poly(3*x + 2, x, domain='ZZ'))
- coeff_monomial(monom)[source]¶
Returns the coefficient of
monom
inf
if there, else None.Examples
>>> from sympy import Poly, exp >>> from sympy.abc import x, y
>>> p = Poly(24*x*y*exp(8) + 23*x, x, y)
>>> p.coeff_monomial(x) 23 >>> p.coeff_monomial(y) 0 >>> p.coeff_monomial(x*y) 24*exp(8)
Note that
Expr.coeff()
behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however:>>> p.as_expr().coeff(x) 24*y*exp(8) + 23 >>> p.as_expr().coeff(y) 24*x*exp(8) >>> p.as_expr().coeff(x*y) 24*exp(8)
See also
nth
more efficient query using exponents of the monomial’s generators
- coeffs(order=None)[source]¶
Returns all non-zero coefficients from
f
in lex order.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 + 2*x + 3, x).coeffs() [1, 2, 3]
See also
- cofactors(g)[source]¶
Returns the GCD of
f
andg
and their cofactors.Returns polynomials
(h, cff, cfg)
such thath = gcd(f, g)
, andcff = quo(f, h)
andcfg = quo(g, h)
are, so called, cofactors off
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x)) (Poly(x - 1, x, domain='ZZ'), Poly(x + 1, x, domain='ZZ'), Poly(x - 2, x, domain='ZZ'))
- compose(g)[source]¶
Computes the functional composition of
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + x, x).compose(Poly(x - 1, x)) Poly(x**2 - x, x, domain='ZZ')
- content()[source]¶
Returns the GCD of polynomial coefficients.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(6*x**2 + 8*x + 12, x).content() 2
- count_roots(inf=None, sup=None)[source]¶
Return the number of roots of
f
in[inf, sup]
interval.Examples
>>> from sympy import Poly, I >>> from sympy.abc import x
>>> Poly(x**4 - 4, x).count_roots(-3, 3) 2 >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I) 1
- decompose()[source]¶
Computes a functional decomposition of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose() [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]
- deflate()[source]¶
Reduce degree of
f
by mappingx_i**m
toy_i
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate() ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
- degree(gen=0)[source]¶
Returns degree of
f
inx_j
.The degree of 0 is negative infinity.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree() 2 >>> Poly(x**2 + y*x + y, x, y).degree(y) 1 >>> Poly(0, x).degree() -oo
- degree_list()[source]¶
Returns a list of degrees of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree_list() (2, 1)
- diff(*specs, **kwargs)[source]¶
Computes partial derivative of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).diff() Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1)) Poly(2*x*y, x, y, domain='ZZ')
- discriminant()[source]¶
Computes the discriminant of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 2*x + 3, x).discriminant() -8
- dispersion(g=None)[source]¶
Compute the dispersion of polynomials.
For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:
\[\begin{split}\operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}\end{split}\]and for a single polynomial \(\operatorname{dis}(f) := \operatorname{dis}(f, f)\).
Examples
>>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4]
We can even perform the computations for polynomials having symbolic coefficients:
>>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1]
See also
References
- dispersionset(g=None)[source]¶
Compute the dispersion set of two polynomials.
For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:
\[\begin{split}\operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}\end{split}\]For a single polynomial one defines \(\operatorname{J}(f) := \operatorname{J}(f, f)\).
Examples
>>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4]
We can even perform the computations for polynomials having symbolic coefficients:
>>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1]
See also
References
- div(g, auto=True)[source]¶
Polynomial division with remainder of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x)) (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False) (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))
- property domain¶
Get the ground domain of a
Poly
Examples
>>> from sympy import Poly, Symbol >>> x = Symbol('x') >>> p = Poly(x**2 + x) >>> p Poly(x**2 + x, x, domain='ZZ') >>> p.domain ZZ
- eject(*gens)[source]¶
Eject selected generators into the ground domain.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
>>> f.eject(x) Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') >>> f.eject(y) Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
- eval(x, a=None, auto=True)[source]¶
Evaluate
f
ata
in the given variable.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y, z
>>> Poly(x**2 + 2*x + 3, x).eval(2) 11
>>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2) Poly(5*y + 8, y, domain='ZZ')
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f.eval({x: 2}) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f.eval({x: 2, y: 5}) Poly(2*z + 31, z, domain='ZZ') >>> f.eval({x: 2, y: 5, z: 7}) 45
>>> f.eval((2, 5)) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ')
- exclude()[source]¶
Remove unnecessary generators from
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import a, b, c, d, x
>>> Poly(a + x, a, b, c, d, x).exclude() Poly(a + x, a, x, domain='ZZ')
- exquo(g, auto=True)[source]¶
Computes polynomial exact quotient of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
- exquo_ground(coeff)[source]¶
Exact quotient of
f
by a an element of the ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x + 4).exquo_ground(2) Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).exquo_ground(2) Traceback (most recent call last): ... ExactQuotientFailed: 2 does not divide 3 in ZZ
- factor_list()[source]¶
Returns a list of irreducible factors of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list() (2, [(Poly(x + y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
- factor_list_include()[source]¶
Returns a list of irreducible factors of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list_include() [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]
- property free_symbols¶
Free symbols of a polynomial expression.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y, z
>>> Poly(x**2 + 1).free_symbols {x} >>> Poly(x**2 + y).free_symbols {x, y} >>> Poly(x**2 + y, x).free_symbols {x, y} >>> Poly(x**2 + y, x, z).free_symbols {x, y}
- property free_symbols_in_domain¶
Free symbols of the domain of
self
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 1).free_symbols_in_domain set() >>> Poly(x**2 + y).free_symbols_in_domain set() >>> Poly(x**2 + y, x).free_symbols_in_domain {y}
- galois_group(by_name=False, max_tries=30, randomize=False)[source]¶
Compute the Galois group of this polynomial.
Examples
>>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**4 - 2) >>> G, _ = f.galois_group(by_name=True) >>> print(G) S4TransitiveSubgroups.D4
- gcd(g)[source]¶
Returns the polynomial GCD of
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x)) Poly(x - 1, x, domain='ZZ')
- gcdex(g, auto=True)[source]¶
Extended Euclidean algorithm of
f
andg
.Returns
(s, t, h)
such thath = gcd(f, g)
ands*f + t*g = h
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
- property gen¶
Return the principal generator.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).gen x
- get_modulus()[source]¶
Get the modulus of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, modulus=2).get_modulus() 2
- gff_list()[source]¶
Computes greatest factorial factorization of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = x**5 + 2*x**4 - x**3 - 2*x**2
>>> Poly(f).gff_list() [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
- ground_roots()[source]¶
Compute roots of
f
by factorization in the ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots() {0: 2, 1: 2}
- half_gcdex(g, auto=True)[source]¶
Half extended Euclidean algorithm of
f
andg
.Returns
(s, h)
such thath = gcd(f, g)
ands*f = h (mod g)
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).half_gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
- has_only_gens(*gens)[source]¶
Return
True
ifPoly(f, *gens)
retains ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y, z
>>> Poly(x*y + 1, x, y, z).has_only_gens(x, y) True >>> Poly(x*y + z, x, y, z).has_only_gens(x, y) False
- homogeneous_order()[source]¶
Returns the homogeneous order of
f
.A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of
f
. If you only want to check if a polynomial is homogeneous, then usePoly.is_homogeneous()
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4) >>> f.homogeneous_order() 5
- homogenize(s)[source]¶
Returns the homogeneous polynomial of
f
.A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use
Poly.is_homogeneous()
. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then usePoly.homogeneous_order()
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y, z
>>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3) >>> f.homogenize(z) Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')
- inject(front=False)[source]¶
Inject ground domain generators into
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)
>>> f.inject() Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ') >>> f.inject(front=True) Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
- integrate(*specs, **args)[source]¶
Computes indefinite integral of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).integrate() Poly(1/3*x**3 + x**2 + x, x, domain='QQ')
>>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0)) Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
- intervals(all=False, eps=None, inf=None, sup=None, fast=False, sqf=False)[source]¶
Compute isolating intervals for roots of
f
.For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 3, x).intervals() [((-2, -1), 1), ((1, 2), 1)] >>> Poly(x**2 - 3, x).intervals(eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
References
- invert(g, auto=True)[source]¶
Invert
f
modulog
when possible.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x)) Poly(-4/3, x, domain='QQ')
>>> Poly(x**2 - 1, x).invert(Poly(x - 1, x)) Traceback (most recent call last): ... NotInvertible: zero divisor
- property is_cyclotomic¶
Returns
True
iff
is a cyclotomic polnomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> Poly(f).is_cyclotomic False
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> Poly(g).is_cyclotomic True
- property is_ground¶
Returns
True
iff
is an element of the ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x, x).is_ground False >>> Poly(2, x).is_ground True >>> Poly(y, x).is_ground True
- property is_homogeneous¶
Returns
True
iff
is a homogeneous polynomial.A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use
Poly.homogeneous_order()
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + x*y, x, y).is_homogeneous True >>> Poly(x**3 + x*y, x, y).is_homogeneous False
- property is_irreducible¶
Returns
True
iff
has no factors over its domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible True >>> Poly(x**2 + 1, x, modulus=2).is_irreducible False
- property is_linear¶
Returns
True
iff
is linear in all its variables.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x + y + 2, x, y).is_linear True >>> Poly(x*y + 2, x, y).is_linear False
- property is_monic¶
Returns
True
if the leading coefficient off
is one.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x + 2, x).is_monic True >>> Poly(2*x + 2, x).is_monic False
- property is_monomial¶
Returns
True
iff
is zero or has only one term.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(3*x**2, x).is_monomial True >>> Poly(3*x**2 + 1, x).is_monomial False
- property is_multivariate¶
Returns
True
iff
is a multivariate polynomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_multivariate False >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate True >>> Poly(x*y**2 + x*y + 1, x).is_multivariate False >>> Poly(x**2 + x + 1, x, y).is_multivariate True
- property is_one¶
Returns
True
iff
is a unit polynomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(0, x).is_one False >>> Poly(1, x).is_one True
- property is_primitive¶
Returns
True
if GCD of the coefficients off
is one.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**2 + 6*x + 12, x).is_primitive False >>> Poly(x**2 + 3*x + 6, x).is_primitive True
- property is_quadratic¶
Returns
True
iff
is quadratic in all its variables.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x*y + 2, x, y).is_quadratic True >>> Poly(x*y**2 + 2, x, y).is_quadratic False
- property is_sqf¶
Returns
True
iff
is a square-free polynomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).is_sqf False >>> Poly(x**2 - 1, x).is_sqf True
- property is_univariate¶
Returns
True
iff
is a univariate polynomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_univariate True >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate False >>> Poly(x*y**2 + x*y + 1, x).is_univariate True >>> Poly(x**2 + x + 1, x, y).is_univariate False
- property is_zero¶
Returns
True
iff
is a zero polynomial.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(0, x).is_zero True >>> Poly(1, x).is_zero False
- l1_norm()[source]¶
Returns l1 norm of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).l1_norm() 6
- lcm(g)[source]¶
Returns polynomial LCM of
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x)) Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')
- length()[source]¶
Returns the number of non-zero terms in
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 2*x - 1).length() 3
- lift()[source]¶
Convert algebraic coefficients to rationals.
Examples
>>> from sympy import Poly, I >>> from sympy.abc import x
>>> Poly(x**2 + I*x + 1, x, extension=I).lift() Poly(x**4 + 3*x**2 + 1, x, domain='QQ')
- ltrim(gen)[source]¶
Remove dummy generators from
f
that are to the left of specifiedgen
in the generators as ordered. Whengen
is an integer, it refers to the generator located at that position within the tuple of generators off
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y, z
>>> Poly(y**2 + y*z**2, x, y, z).ltrim(y) Poly(y**2 + y*z**2, y, z, domain='ZZ') >>> Poly(z, x, y, z).ltrim(-1) Poly(z, z, domain='ZZ')
- make_monic_over_integers_by_scaling_roots()[source]¶
Turn any univariate polynomial over QQ or ZZ into a monic polynomial over ZZ, by scaling the roots as necessary.
- Returns:
Pair
(g, c)
g is the polynomial
c is the integer by which the roots had to be scaled
Explanation
This operation can be performed whether or not f is irreducible; when it is, this can be understood as determining an algebraic integer generating the same field as a root of f.
Examples
>>> from sympy import Poly, S >>> from sympy.abc import x >>> f = Poly(x**2/2 + S(1)/4 * x + S(1)/8, x, domain='QQ') >>> f.make_monic_over_integers_by_scaling_roots() (Poly(x**2 + 2*x + 4, x, domain='ZZ'), 4)
- max_norm()[source]¶
Returns maximum norm of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).max_norm() 3
- monic(auto=True)[source]¶
Divides all coefficients by
LC(f)
.Examples
>>> from sympy import Poly, ZZ >>> from sympy.abc import x
>>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic() Poly(x**2 + 2*x + 3, x, domain='QQ')
>>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic() Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')
- monoms(order=None)[source]¶
Returns all non-zero monomials from
f
in lex order.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms() [(2, 0), (1, 2), (1, 1), (0, 1)]
See also
- mul(g)[source]¶
Multiply two polynomials
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).mul(Poly(x - 2, x)) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x)*Poly(x - 2, x) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
- mul_ground(coeff)[source]¶
Multiply
f
by a an element of the ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x + 1).mul_ground(2) Poly(2*x + 2, x, domain='ZZ')
- neg()[source]¶
Negate all coefficients in
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).neg() Poly(-x**2 + 1, x, domain='ZZ')
>>> -Poly(x**2 - 1, x) Poly(-x**2 + 1, x, domain='ZZ')
- norm()[source]¶
Computes the product,
Norm(f)
, of the conjugates of a polynomialf
defined over a number fieldK
.Examples
>>> from sympy import Poly, sqrt >>> from sympy.abc import x
>>> a, b = sqrt(2), sqrt(3)
A polynomial over a quadratic extension. Two conjugates x - a and x + a.
>>> f = Poly(x - a, x, extension=a) >>> f.norm() Poly(x**2 - 2, x, domain='QQ')
A polynomial over a quartic extension. Four conjugates x - a, x - a, x + a and x + a.
>>> f = Poly(x - a, x, extension=(a, b)) >>> f.norm() Poly(x**4 - 4*x**2 + 4, x, domain='QQ')
- nroots(n=15, maxsteps=50, cleanup=True)[source]¶
Compute numerical approximations of roots of
f
.- Parameters:
n … the number of digits to calculate
maxsteps … the maximum number of iterations to do
If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
exception. You need to rerun with higher maxsteps.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 3).nroots(n=15) [-1.73205080756888, 1.73205080756888] >>> Poly(x**2 - 3).nroots(n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151]
- nth(*N)[source]¶
Returns the
n
-th coefficient off
whereN
are the exponents of the generators in the term of interest.Examples
>>> from sympy import Poly, sqrt >>> from sympy.abc import x, y
>>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2) 2 >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2) 2 >>> Poly(4*sqrt(x)*y) Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ') >>> _.nth(1, 1) 4
See also
- nth_power_roots_poly(n)[source]¶
Construct a polynomial with n-th powers of roots of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = Poly(x**4 - x**2 + 1)
>>> f.nth_power_roots_poly(2) Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(3) Poly(x**4 + 2*x**2 + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(4) Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(12) Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')
- property one¶
Return one polynomial with
self
’s properties.
- pdiv(g)[source]¶
Polynomial pseudo-division of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x)) (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))
- per(rep, gens=None, remove=None)[source]¶
Create a Poly out of the given representation.
Examples
>>> from sympy import Poly, ZZ >>> from sympy.abc import x, y
>>> from sympy.polys.polyclasses import DMP
>>> a = Poly(x**2 + 1)
>>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y]) Poly(y + 1, y, domain='ZZ')
- pexquo(g)[source]¶
Polynomial exact pseudo-quotient of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
- pow(n)[source]¶
Raise
f
to a non-negative powern
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x - 2, x).pow(3) Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
>>> Poly(x - 2, x)**3 Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
- pquo(g)[source]¶
Polynomial pseudo-quotient of
f
byg
.See the Caveat note in the function prem(f, g).
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x)) Poly(2*x + 4, x, domain='ZZ')
>>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ')
- prem(g)[source]¶
Polynomial pseudo-remainder of
f
byg
.- Caveat: The function prem(f, g, x) can be safely used to compute
in Z[x] _only_ subresultant polynomial remainder sequences (prs’s).
To safely compute Euclidean and Sturmian prs’s in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs’s in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs’s in Z[x] employing rem_z(f, g, x).
The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the divident times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x)) Poly(20, x, domain='ZZ')
- primitive()[source]¶
Returns the content and a primitive form of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**2 + 8*x + 12, x).primitive() (2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
- quo(g, auto=True)[source]¶
Computes polynomial quotient of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x)) Poly(1/2*x + 1, x, domain='QQ')
>>> Poly(x**2 - 1, x).quo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ')
- quo_ground(coeff)[source]¶
Quotient of
f
by a an element of the ground domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x + 4).quo_ground(2) Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).quo_ground(2) Poly(x + 1, x, domain='ZZ')
- rat_clear_denoms(g)[source]¶
Clear denominators in a rational function
f/g
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> f = Poly(x**2/y + 1, x) >>> g = Poly(x**3 + y, x)
>>> p, q = f.rat_clear_denoms(g)
>>> p Poly(x**2 + y, x, domain='ZZ[y]') >>> q Poly(y*x**3 + y**2, x, domain='ZZ[y]')
- real_roots(multiple=True, radicals=True)[source]¶
Return a list of real roots with multiplicities.
See
real_roots()
for more explanation.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).real_roots() [CRootOf(x**3 + x + 1, 0)]
- refine_root(s, t, eps=None, steps=None, fast=False, check_sqf=False)[source]¶
Refine an isolating interval of a root to the given precision.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2) (19/11, 26/15)
- rem(g, auto=True)[source]¶
Computes the polynomial remainder of
f
byg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x)) Poly(5, x, domain='ZZ')
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False) Poly(x**2 + 1, x, domain='ZZ')
- reorder(*gens, **args)[source]¶
Efficiently apply new order of generators.
Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + x*y**2, x, y).reorder(y, x) Poly(y**2*x + x**2, y, x, domain='ZZ')
- replace(x, y=None, **_ignore)[source]¶
Replace
x
withy
in generators list.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 1, x).replace(x, y) Poly(y**2 + 1, y, domain='ZZ')
- resultant(g, includePRS=False)[source]¶
Computes the resultant of
f
andg
via PRS.If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling
subresultants()
separately.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x)
>>> f.resultant(Poly(x**2 - 1, x)) 4 >>> f.resultant(Poly(x**2 - 1, x), includePRS=True) (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')])
- retract(field=None)[source]¶
Recalculate the ground domain of a polynomial.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x, domain='QQ[y]') >>> f Poly(x**2 + 1, x, domain='QQ[y]')
>>> f.retract() Poly(x**2 + 1, x, domain='ZZ') >>> f.retract(field=True) Poly(x**2 + 1, x, domain='QQ')
- revert(n)[source]¶
Compute
f**(-1)
modx**n
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(1, x).revert(2) Poly(1, x, domain='ZZ')
>>> Poly(1 + x, x).revert(1) Poly(1, x, domain='ZZ')
>>> Poly(x**2 - 2, x).revert(2) Traceback (most recent call last): ... NotReversible: only units are reversible in a ring
>>> Poly(1/x, x).revert(1) Traceback (most recent call last): ... PolynomialError: 1/x contains an element of the generators set
- root(index, radicals=True)[source]¶
Get an indexed root of a polynomial.
Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
>>> f.root(0) -1/2 >>> f.root(1) 2 >>> f.root(2) 2 >>> f.root(3) Traceback (most recent call last): ... IndexError: root index out of [-3, 2] range, got 3
>>> Poly(x**5 + x + 1).root(0) CRootOf(x**3 - x**2 + 1, 0)
- same_root(a, b)[source]¶
Decide whether two roots of this polynomial are equal.
- Raises:
DomainError
MultivariatePolynomialError
If the polynomial is not univariate.
PolynomialError
If the polynomial is of degree < 2.
Examples
>>> from sympy import Poly, cyclotomic_poly, exp, I, pi >>> f = Poly(cyclotomic_poly(5)) >>> r0 = exp(2*I*pi/5) >>> indices = [i for i, r in enumerate(f.all_roots()) if f.same_root(r, r0)] >>> print(indices) [3]
- set_modulus(modulus)[source]¶
Set the modulus of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2) Poly(x**2 + 1, x, modulus=2)
- shift(a)[source]¶
Efficiently compute Taylor shift
f(x + a)
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).shift(2) Poly(x**2 + 2*x + 1, x, domain='ZZ')
See also
shift_list
Analogous method for multivariate polynomials.
- shift_list(a)[source]¶
Efficiently compute Taylor shift
f(X + A)
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x*y, [x,y]).shift_list([1, 2]) == Poly((x+1)*(y+2), [x,y]) True
See also
shift
Analogous method for univariate polynomials.
- sqf_list(all=False)[source]¶
Returns a list of square-free factors of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> Poly(f).sqf_list() (2, [(Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)])
>>> Poly(f).sqf_list(all=True) (2, [(Poly(1, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)])
- sqf_list_include(all=False)[source]¶
Returns a list of square-free factors of
f
.Examples
>>> from sympy import Poly, expand >>> from sympy.abc import x
>>> f = expand(2*(x + 1)**3*x**4) >>> f 2*x**7 + 6*x**6 + 6*x**5 + 2*x**4
>>> Poly(f).sqf_list_include() [(Poly(2, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)]
>>> Poly(f).sqf_list_include(all=True) [(Poly(2, x, domain='ZZ'), 1), (Poly(1, x, domain='ZZ'), 2), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)]
- sqf_norm()[source]¶
Computes square-free norm of
f
.Returns
s
,f
,r
, such thatg(x) = f(x-sa)
andr(x) = Norm(g(x))
is a square-free polynomial overK
, wherea
is the algebraic extension of the ground domain.Examples
>>> from sympy import Poly, sqrt >>> from sympy.abc import x
>>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()
>>> s [1] >>> f Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>') >>> r Poly(x**4 - 4*x**2 + 16, x, domain='QQ')
- sqf_part()[source]¶
Computes square-free part of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 - 3*x - 2, x).sqf_part() Poly(x**2 - x - 2, x, domain='ZZ')
- sqr()[source]¶
Square a polynomial
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x - 2, x).sqr() Poly(x**2 - 4*x + 4, x, domain='ZZ')
>>> Poly(x - 2, x)**2 Poly(x**2 - 4*x + 4, x, domain='ZZ')
- sturm(auto=True)[source]¶
Computes the Sturm sequence of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**3 - 2*x**2 + x - 3, x).sturm() [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'), Poly(3*x**2 - 4*x + 1, x, domain='QQ'), Poly(2/9*x + 25/9, x, domain='QQ'), Poly(-2079/4, x, domain='QQ')]
- sub(g)[source]¶
Subtract two polynomials
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).sub(Poly(x - 2, x)) Poly(x**2 - x + 3, x, domain='ZZ')
>>> Poly(x**2 + 1, x) - Poly(x - 2, x) Poly(x**2 - x + 3, x, domain='ZZ')
- sub_ground(coeff)[source]¶
Subtract an element of the ground domain from
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x + 1).sub_ground(2) Poly(x - 1, x, domain='ZZ')
- subresultants(g)[source]¶
Computes the subresultant PRS of
f
andg
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x)) [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')]
- terms(order=None)[source]¶
Returns all non-zero terms from
f
in lex order.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms() [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
See also
- terms_gcd()[source]¶
Remove GCD of terms from the polynomial
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd() ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
- termwise(func, *gens, **args)[source]¶
Apply a function to all terms of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> def func(k, coeff): ... k = k[0] ... return coeff//10**(2-k)
>>> Poly(x**2 + 20*x + 400).termwise(func) Poly(x**2 + 2*x + 4, x, domain='ZZ')
- to_exact()[source]¶
Make the ground domain exact.
Examples
>>> from sympy import Poly, RR >>> from sympy.abc import x
>>> Poly(x**2 + 1.0, x, domain=RR).to_exact() Poly(x**2 + 1, x, domain='QQ')
- to_field()[source]¶
Make the ground domain a field.
Examples
>>> from sympy import Poly, ZZ >>> from sympy.abc import x
>>> Poly(x**2 + 1, x, domain=ZZ).to_field() Poly(x**2 + 1, x, domain='QQ')
- to_ring()[source]¶
Make the ground domain a ring.
Examples
>>> from sympy import Poly, QQ >>> from sympy.abc import x
>>> Poly(x**2 + 1, domain=QQ).to_ring() Poly(x**2 + 1, x, domain='ZZ')
- total_degree()[source]¶
Returns the total degree of
f
.Examples
>>> from sympy import Poly >>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).total_degree() 2 >>> Poly(x + y**5, x, y).total_degree() 5
- transform(p, q)[source]¶
Efficiently evaluate the functional transformation
q**n * f(p/q)
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x)) Poly(4, x, domain='ZZ')
- trunc(p)[source]¶
Reduce
f
modulo a constantp
.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3) Poly(-x**3 - x + 1, x, domain='ZZ')
- unify(g)[source]¶
Make
f
andg
belong to the same domain.Examples
>>> from sympy import Poly >>> from sympy.abc import x
>>> f, g = Poly(x/2 + 1), Poly(2*x + 1)
>>> f Poly(1/2*x + 1, x, domain='QQ') >>> g Poly(2*x + 1, x, domain='ZZ')
>>> F, G = f.unify(g)
>>> F Poly(1/2*x + 1, x, domain='QQ') >>> G Poly(2*x + 1, x, domain='QQ')
- property unit¶
Return unit polynomial with
self
’s properties.
- property zero¶
Return zero polynomial with
self
’s properties.
- class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]¶
Class for representing pure polynomials.
- property free_symbols¶
Free symbols of a polynomial.
Examples
>>> from sympy import PurePoly >>> from sympy.abc import x, y
>>> PurePoly(x**2 + 1).free_symbols set() >>> PurePoly(x**2 + y).free_symbols set() >>> PurePoly(x**2 + y, x).free_symbols {y}
- class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]¶
Represents a reduced Groebner basis.
- contains(poly)[source]¶
Check if
poly
belongs the ideal generated byself
.Examples
>>> from sympy import groebner >>> from sympy.abc import x, y
>>> f = 2*x**3 + y**3 + 3*y >>> G = groebner([x**2 + y**2 - 1, x*y - 2])
>>> G.contains(f) True >>> G.contains(f + 1) False
- fglm(order)[source]¶
Convert a Groebner basis from one ordering to another.
The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly.
Examples
>>> from sympy.abc import x, y >>> from sympy import groebner
>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] >>> G = groebner(F, x, y, order='grlex')
>>> list(G.fglm('lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] >>> list(groebner(F, x, y, order='lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
References
[R810]J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient Computation of Zero-dimensional Groebner Bases by Change of Ordering
- property is_zero_dimensional¶
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the leading monomial of any element of
F
is bounded.References
David A. Cox, John B. Little, Donal O’Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230
- reduce(expr, auto=True)[source]¶
Reduces a polynomial modulo a Groebner basis.
Given a polynomial
f
and a set of polynomialsG = (g_1, ..., g_n)
, computes a set of quotientsq = (q_1, ..., q_n)
and the remainderr
such thatf = q_1*f_1 + ... + q_n*f_n + r
, wherer
vanishes orr
is a completely reduced polynomial with respect toG
.Examples
>>> from sympy import groebner, expand >>> from sympy.abc import x, y
>>> f = 2*x**4 - x**2 + y**3 + y**2 >>> G = groebner([x**3 - x, y**3 - y])
>>> G.reduce(f) ([2*x, 1], x**2 + y**2 + y) >>> Q, r = _
>>> expand(sum(q*g for q, g in zip(Q, G)) + r) 2*x**4 - x**2 + y**3 + y**2 >>> _ == f True
Extra polynomial manipulation functions¶
- sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]¶
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if \(f = f(x_1, x_2, \dots, x_n)\), then \(f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})\), where \((i_1, i_2, \dots, i_n)\) is a permutation of \((1, 2, \dots, n)\) (an element of the group \(S_n\)).
Returns a tuple of symmetric polynomials
(f1, f2, ..., fn)
such thatf = f1 + f2 + ... + fn
.Examples
>>> from sympy.polys.polyfuncs import symmetrize >>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2) (-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True) (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2) (-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True) (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
- sympy.polys.polyfuncs.horner(f, *gens, **args)[source]¶
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).
Examples
>>> from sympy.polys.polyfuncs import horner >>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e) e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x) x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y) y*(x*y*(4*x + 2) + x*(2*x + 1))
References
- sympy.polys.polyfuncs.interpolate(data, x)[source]¶
Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).
Examples
>>> from sympy.polys.polyfuncs import interpolate >>> from sympy.abc import a, b, x
A list is interpreted as though it were paired with a range starting from 1:
>>> interpolate([1, 4, 9, 16], x) x**2
This can be made explicit by giving a list of coordinates:
>>> interpolate([(1, 1), (2, 4), (3, 9)], x) x**2
The (x, y) coordinates can also be given as keys and values of a dictionary (and the points need not be equispaced):
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x) x**2 + 1 >>> interpolate({-1: 2, 1: 2, 2: 5}, x) x**2 + 1
If the interpolation is going to be used only once then the value of interest can be passed instead of passing a symbol:
>>> interpolate([1, 4, 9], 5) 25
Symbolic coordinates are also supported:
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)] [(1, a), (2, b), (3, -a + 2*b)]
- sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]¶
Generate Viete’s formulas for
f
.Examples
>>> from sympy.polys.polyfuncs import viete >>> from sympy import symbols
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
>>> viete(a*x**2 + b*x + c, [r1, r2], x) [(r1 + r2, -b/a), (r1*r2, c/a)]
Domain constructors¶
- sympy.polys.constructor.construct_domain(obj, **args)[source]¶
Construct a minimal domain for a list of expressions.
- Parameters:
obj: list or dict
The expressions to build a domain for.
**args: keyword arguments
Options that affect the choice of domain.
- Returns:
(K, elements): Domain and list of domain elements
The domain K that can represent the expressions and the list or dict of domain elements representing the same expressions as elements of K.
Explanation
Given a list of normal SymPy expressions (of type
Expr
)construct_domain
will find a minimalDomain
that can represent those expressions. The expressions will be converted to elements of the domain and both the domain and the domain elements are returned.Examples
Given a list of
Integer
construct_domain
will return the domain ZZ and a list of integers as elements of ZZ.>>> from sympy import construct_domain, S >>> expressions = [S(2), S(3), S(4)] >>> K, elements = construct_domain(expressions) >>> K ZZ >>> elements [2, 3, 4] >>> type(elements[0]) <class 'int'> >>> type(expressions[0]) <class 'sympy.core.numbers.Integer'>
If there are any
Rational
then QQ is returned instead.>>> construct_domain([S(1)/2, S(3)/4]) (QQ, [1/2, 3/4])
If there are symbols then a polynomial ring K[x] is returned.
>>> from sympy import symbols >>> x, y = symbols('x, y') >>> construct_domain([2*x + 1, S(3)/4]) (QQ[x], [2*x + 1, 3/4]) >>> construct_domain([2*x + 1, y]) (ZZ[x,y], [2*x + 1, y])
If any symbols appear with negative powers then a rational function field K(x) will be returned.
>>> construct_domain([y/x, x/(1 - y)]) (ZZ(x,y), [y/x, -x/(y - 1)])
Irrational algebraic numbers will result in the EX domain by default. The keyword argument
extension=True
leads to the construction of an algebraic number field QQ<a>.>>> from sympy import sqrt >>> construct_domain([sqrt(2)]) (EX, [EX(sqrt(2))]) >>> construct_domain([sqrt(2)], extension=True) (QQ<sqrt(2)>, [ANP([1, 0], [1, 0, -2], QQ)])
Monomials encoded as tuples¶
- class sympy.polys.monomials.Monomial(monom, gens=None)[source]¶
Class representing a monomial, i.e. a product of powers.
- sympy.polys.monomials.itermonomials(variables, max_degrees, min_degrees=None)[source]¶
max_degrees
andmin_degrees
are either both integers or both lists. Unless otherwise specified,min_degrees
is either0
or[0, ..., 0]
.A generator of all monomials
monom
is returned, such that eithermin_degree <= total_degree(monom) <= max_degree
, ormin_degrees[i] <= degree_list(monom)[i] <= max_degrees[i]
, for alli
.Case I.
max_degrees
Andmin_degrees
Are Both IntegersGiven a set of variables \(V\) and a min_degree \(N\) and a max_degree \(M\) generate a set of monomials of degree less than or equal to \(N\) and greater than or equal to \(M\). The total number of monomials in commutative variables is huge and is given by the following formula if \(M = 0\):
\[\frac{(\#V + N)!}{\#V! N!}\]For example if we would like to generate a dense polynomial of a total degree \(N = 50\) and \(M = 0\), which is the worst case, in 5 variables, assuming that exponents and all of coefficients are 32-bit long and stored in an array we would need almost 80 GiB of memory! Fortunately most polynomials, that we will encounter, are sparse.
Consider monomials in commutative variables \(x\) and \(y\) and non-commutative variables \(a\) and \(b\):
>>> from sympy import symbols >>> from sympy.polys.monomials import itermonomials >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y >>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2] >>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3] >>> a, b = symbols('a, b', commutative=False) >>> set(itermonomials([a, b, x], 2)) {1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b} >>> sorted(itermonomials([x, y], 2, 1), key=monomial_key('grlex', [y, x])) [x, y, x**2, x*y, y**2]
Case Ii.
max_degrees
Andmin_degrees
Are Both ListsIf
max_degrees = [d_1, ..., d_n]
andmin_degrees = [e_1, ..., e_n]
, the number of monomials generated is:\[(d_1 - e_1 + 1) (d_2 - e_2 + 1) \cdots (d_n - e_n + 1)\]Let us generate all monomials
monom
in variables \(x\) and \(y\) such that[1, 2][i] <= degree_list(monom)[i] <= [2, 4][i]
,i = 0, 1
>>> from sympy import symbols >>> from sympy.polys.monomials import itermonomials >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y >>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y])) [x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2]
- sympy.polys.monomials.monomial_count(V, N)[source]¶
Computes the number of monomials.
The number of monomials is given by the following formula:
\[\frac{(\#V + N)!}{\#V! N!}\]where \(N\) is a total degree and \(V\) is a set of variables.
Examples
>>> from sympy.polys.monomials import itermonomials, monomial_count >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y
>>> monomial_count(2, 2) 6
>>> M = list(itermonomials([x, y], 2))
>>> sorted(M, key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2] >>> len(M) 6
Orderings of monomials¶
Formal manipulation of roots of polynomials¶
- sympy.polys.rootoftools.rootof(f, x, index=None, radicals=True, expand=True)[source]¶
An indexed root of a univariate polynomial.
Returns either a
ComplexRootOf
object or an explicit expression involving radicals.- Parameters:
f : Expr
Univariate polynomial.
x : Symbol, optional
Generator for
f
.index : int or Integer
radicals : bool
Return a radical expression if possible.
expand : bool
Expand
f
.
- class sympy.polys.rootoftools.RootOf(f, x, index=None, radicals=True, expand=True)[source]¶
Represents a root of a univariate polynomial.
Base class for roots of different kinds of polynomials. Only complex roots are currently supported.
- class sympy.polys.rootoftools.ComplexRootOf(f, x, index=None, radicals=False, expand=True)[source]¶
Represents an indexed complex root of a polynomial.
Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order:
real roots come first and are sorted in increasing order;
complex roots come next and are sorted primarily by increasing real part, secondarily by increasing imaginary part.
Currently only rational coefficients are allowed. Can be imported as
CRootOf
. To avoid confusion, the generator must be a Symbol.Examples
>>> from sympy import CRootOf, rootof >>> from sympy.abc import x
CRootOf is a way to reference a particular root of a polynomial. If there is a rational root, it will be returned:
>>> CRootOf.clear_cache() # for doctest reproducibility >>> CRootOf(x**2 - 4, 0) -2
Whether roots involving radicals are returned or not depends on whether the
radicals
flag is true (which is set to True with rootof):>>> CRootOf(x**2 - 3, 0) CRootOf(x**2 - 3, 0) >>> CRootOf(x**2 - 3, 0, radicals=True) -sqrt(3) >>> rootof(x**2 - 3, 0) -sqrt(3)
The following cannot be expressed in terms of radicals:
>>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0)
The root bounds can be seen, however, and they are used by the evaluation methods to get numerical approximations for the root.
>>> interval = r._get_interval(); interval (-1, 0) >>> r.evalf(2) -0.98
The evalf method refines the width of the root bounds until it guarantees that any decimal approximation within those bounds will satisfy the desired precision. It then stores the refined interval so subsequent requests at or below the requested precision will not have to recompute the root bounds and will return very quickly.
Before evaluation above, the interval was
>>> interval (-1, 0)
After evaluation it is now
>>> r._get_interval() (-165/169, -206/211)
To reset all intervals for a given polynomial, the
_reset()
method can be called from any CRootOf instance of the polynomial:>>> r._reset() >>> r._get_interval() (-1, 0)
The
eval_approx()
method will also find the root to a given precision but the interval is not modified unless the search for the root fails to converge within the root bounds. And the secant method is used to find the root. (Theevalf
method uses bisection and will always update the interval.)>>> r.eval_approx(2) -0.98
The interval needed to be slightly updated to find that root:
>>> r._get_interval() (-1, -1/2)
The
evalf_rational
will compute a rational approximation of the root to the desired accuracy or precision.>>> r.eval_rational(n=2) -69629/71318
>>> t = CRootOf(x**3 + 10*x + 1, 1) >>> t.eval_rational(1e-1) 15/256 - 805*I/256 >>> t.eval_rational(1e-1, 1e-4) 3275/65536 - 414645*I/131072 >>> t.eval_rational(1e-4, 1e-4) 6545/131072 - 414645*I/131072 >>> t.eval_rational(n=2) 104755/2097152 - 6634255*I/2097152
Notes
Although a PurePoly can be constructed from a non-symbol generator RootOf instances of non-symbols are disallowed to avoid confusion over what root is being represented.
>>> from sympy import exp, PurePoly >>> PurePoly(x) == PurePoly(exp(x)) True >>> CRootOf(x - 1, 0) 1 >>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0 Traceback (most recent call last): ... sympy.polys.polyerrors.PolynomialError: generator must be a Symbol
See also
- classmethod _all_roots(poly, use_cache=True)[source]¶
Get real and complex roots of a composite polynomial.
- classmethod _complexes_index(complexes, index)[source]¶
Map initial complex root index to an index in a factor where the root belongs.
- classmethod _complexes_sorted(complexes)[source]¶
Make complex isolating intervals disjoint and sort roots.
- classmethod _count_roots(roots)[source]¶
Count the number of real or complex roots with multiplicities.
- classmethod _get_complexes(factors, use_cache=True)[source]¶
Compute complex root isolating intervals for a list of factors.
- classmethod _get_complexes_sqf(currentfactor, use_cache=True)[source]¶
Get complex root isolating intervals for a square-free factor.
- classmethod _get_reals(factors, use_cache=True)[source]¶
Compute real root isolating intervals for a list of factors.
- classmethod _get_reals_sqf(currentfactor, use_cache=True)[source]¶
Get real root isolating intervals for a square-free factor.
- classmethod _get_roots(method, poly, radicals)[source]¶
Return postprocessed roots of specified kind.
- classmethod _indexed_root(poly, index, lazy=False)[source]¶
Get a root of a composite polynomial by index.
- classmethod _postprocess_root(root, radicals)[source]¶
Return the root if it is trivial or a
CRootOf
object.
- classmethod _preprocess_roots(poly)[source]¶
Take heroic measures to make
poly
compatible withCRootOf
.
- classmethod _reals_index(reals, index)[source]¶
Map initial real root index to an index in a factor where the root belongs.
- classmethod _refine_complexes(complexes)[source]¶
return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in terms of the y-bounds.
- classmethod _roots_trivial(poly, radicals)[source]¶
Compute roots in linear, quadratic and binomial cases.
- classmethod clear_cache()[source]¶
Reset cache for reals and complexes.
The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the most current values are shown. \(clear_cache\) will reset all CRootOf instances back to their original state.
See also
- eval_approx(n, return_mpmath=False)[source]¶
Evaluate this complex root to the given precision.
This uses secant method and root bounds are used to both generate an initial guess and to check that the root returned is valid. If ever the method converges outside the root bounds, the bounds will be made smaller and updated.
- eval_rational(dx=None, dy=None, n=15)[source]¶
Return a Rational approximation of
self
that has real and imaginary component approximations that are withindx
anddy
of the true values, respectively. Alternatively,n
digits of precision can be specified.The interval is refined with bisection and is sure to converge. The root bounds are updated when the refinement is complete so recalculation at the same or lesser precision will not have to repeat the refinement and should be much faster.
The following example first obtains Rational approximation to 1e-8 accuracy for all roots of the 4-th order Legendre polynomial. Since the roots are all less than 1, this will ensure the decimal representation of the approximation will be correct (including rounding) to 6 digits:
>>> from sympy import legendre_poly, Symbol >>> x = Symbol("x") >>> p = legendre_poly(4, x, polys=True) >>> r = p.real_roots()[-1] >>> r.eval_rational(10**-8).n(6) 0.861136
It is not necessary to a two-step calculation, however: the decimal representation can be computed directly:
>>> r.evalf(17) 0.86113631159405258
Symbolic root-finding algorithms¶
- sympy.polys.polyroots.roots(f, *gens, auto=True, cubics=True, trig=False, quartics=True, quintics=False, multiple=False, filter=None, predicate=None, strict=False, **flags)[source]¶
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial’s coefficients), returns a dictionary with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get a complete set of roots use RootOf class or numerical methods instead. By default cubic and quartic formulas are used in the algorithm. To disable them because of unreadable output set
cubics=False
orquartics=False
respectively. If cubic roots are real but are expressed in terms of complex numbers (casus irreducibilis [1]) thetrig
flag can be set to True to have the solutions returned in terms of cosine and inverse cosine functions.To get roots from a specific domain set the
filter
flag with one of the following specifiers: Z, Q, R, I, C. By default all roots are returned (this is equivalent to settingfilter='C'
).By default a dictionary is returned giving a compact result in case of multiple roots. However to get a list containing all those roots set the
multiple
flag to True; the list will have identical roots appearing next to each other in the result. (For a given Poly, the all_roots method will give the roots in sorted numerical order.)If the
strict
flag is True,UnsolvableFactorError
will be raised if the roots found are known to be incomplete (because some roots are not expressible in radicals).Examples
>>> from sympy import Poly, roots, degree >>> from sympy.abc import x, y
>>> roots(x**2 - 1, x) {-1: 1, 1: 1}
>>> p = Poly(x**2-1, x) >>> roots(p) {-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x)) {-sqrt(y): 1, sqrt(y): 1}
>>> roots(x**2 - y, x) {-sqrt(y): 1, sqrt(y): 1}
>>> roots([1, 0, -1]) {-1: 1, 1: 1}
roots
will only return roots expressible in radicals. If the given polynomial has some or all of its roots inexpressible in radicals, the result ofroots
will be incomplete or empty respectively.Example where result is incomplete:
>>> roots((x-1)*(x**5-x+1), x) {1: 1}
In this case, the polynomial has an unsolvable quintic factor whose roots cannot be expressed by radicals. The polynomial has a rational root (due to the factor \((x-1)\)), which is returned since
roots
always finds all rational roots.Example where result is empty:
>>> roots(x**7-3*x**2+1, x) {}
Here, the polynomial has no roots expressible in radicals, so
roots
returns an empty dictionary.The result produced by
roots
is complete if and only if the sum of the multiplicity of each root is equal to the degree of the polynomial. If strict=True, UnsolvableFactorError will be raised if the result is incomplete.The result can be be checked for completeness as follows:
>>> f = x**3-2*x**2+1 >>> sum(roots(f, x).values()) == degree(f, x) True >>> f = (x-1)*(x**5-x+1) >>> sum(roots(f, x).values()) == degree(f, x) False
References
Special polynomials¶
- sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]¶
Generates n-th Swinnerton-Dyer polynomial in \(x\).
- Parameters:
n : int
\(n\) decides the order of polynomial
x : optional
polys : bool, optional
polys=True
returns an expression, otherwise (default) returns an expression.
- sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]¶
Construct Lagrange interpolating polynomial for
n
data points. If a sequence of values are given forX
andY
then the firstn
values will be used.
- sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]¶
Generates cyclotomic polynomial of order \(n\) in \(x\).
- Parameters:
n : int
\(n\) decides the order of polynomial
x : optional
polys : bool, optional
polys=True
returns an expression, otherwise (default) returns an expression.
- sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]¶
Generates symmetric polynomial of order \(n\).
- Parameters:
polys: bool, optional (default: False)
Returns a Poly object when
polys=True
, otherwise (default) returns an expression.
- sympy.polys.specialpolys.random_poly(x, n, inf, sup, domain=ZZ, polys=False)[source]¶
Generates a polynomial of degree
n
with coefficients in[inf, sup]
.- Parameters:
x
\(x\) is the independent term of polynomial
n : int
\(n\) decides the order of polynomial
inf
Lower limit of range in which coefficients lie
sup
Upper limit of range in which coefficients lie
domain : optional
Decides what ring the coefficients are supposed to belong. Default is set to Integers.
polys : bool, optional
polys=True
returns an expression, otherwise (default) returns an expression.
Orthogonal polynomials¶
- sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]¶
Generates the Chebyshev polynomial of the first kind \(T_n(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]¶
Generates the Chebyshev polynomial of the second kind \(U_n(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]¶
Generates the Gegenbauer polynomial \(C_n^{(a)}(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
a
Decides minimal domain for the list of coefficients.
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]¶
Generates the Hermite polynomial \(H_n(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]¶
Generates the probabilist’s Hermite polynomial \(He_n(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]¶
Generates the Jacobi polynomial \(P_n^{(a,b)}(x)\).
- Parameters:
n : int
Degree of the polynomial.
a
Lower limit of minimal domain for the list of coefficients.
b
Upper limit of minimal domain for the list of coefficients.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]¶
Generates the Legendre polynomial \(P_n(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]¶
Generates the Laguerre polynomial \(L_n^{(\alpha)}(x)\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
alpha : optional
Decides minimal domain for the list of coefficients.
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]¶
Coefficients for the spherical Bessel functions.
These are only needed in the jn() function.
The coefficients are calculated from:
fn(0, z) = 1/z fn(1, z) = 1/z**2 fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
Examples
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn >>> from sympy import Symbol >>> z = Symbol("z") >>> fn(1, z) z**(-2) >>> fn(2, z) -1/z + 3/z**3 >>> fn(3, z) -6/z**2 + 15/z**4 >>> fn(4, z) 1/z - 45/z**3 + 105/z**5
Appell sequences¶
- sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]¶
Generates the Bernoulli polynomial \(\operatorname{B}_n(x)\).
\(\operatorname{B}_n(x)\) is the unique polynomial satisfying
\[\int_{x}^{x+1} \operatorname{B}_n(t) \,dt = x^n.\]Based on this, we have for nonnegative integer \(s\) and integer \(a\) and \(b\)
\[\sum_{k=a}^{b} k^s = \frac{\operatorname{B}_{s+1}(b+1) - \operatorname{B}_{s+1}(a)}{s+1}\]which is related to Jakob Bernoulli’s original motivation for introducing the Bernoulli numbers, the values of these polynomials at \(x = 1\).
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
Examples
>>> from sympy import summation >>> from sympy.abc import x >>> from sympy.polys import bernoulli_poly >>> bernoulli_poly(5, x) x**5 - 5*x**4/2 + 5*x**3/3 - x/6
>>> def psum(p, a, b): ... return (bernoulli_poly(p+1,b+1) - bernoulli_poly(p+1,a)) / (p+1) >>> psum(4, -6, 27) 3144337 >>> summation(x**4, (x, -6, 27)) 3144337
>>> psum(1, 1, x).factor() x*(x + 1)/2 >>> psum(2, 1, x).factor() x*(x + 1)*(2*x + 1)/6 >>> psum(3, 1, x).factor() x**2*(x + 1)**2/4
References
- sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]¶
Generates the central Bernoulli polynomial \(\operatorname{B}_n^c(x)\).
These are scaled and shifted versions of the plain Bernoulli polynomials, done in such a way that \(\operatorname{B}_n^c(x)\) is an even or odd function for even or odd \(n\) respectively:
\[\operatorname{B}_n^c(x) = 2^n \operatorname{B}_n \left(\frac{x+1}{2}\right)\]- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]¶
Generates the Genocchi polynomial \(\operatorname{G}_n(x)\).
\(\operatorname{G}_n(x)\) is twice the difference between the plain and central Bernoulli polynomials, so has degree \(n-1\):
\[\operatorname{G}_n(x) = 2 (\operatorname{B}_n(x) - \operatorname{B}_n^c(x))\]The factor of 2 in the definition endows \(\operatorname{G}_n(x)\) with integer coefficients.
- Parameters:
n : int
Degree of the polynomial plus one.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]¶
Generates the Euler polynomial \(\operatorname{E}_n(x)\).
These are scaled and reindexed versions of the Genocchi polynomials:
\[\operatorname{E}_n(x) = -\frac{\operatorname{G}_{n+1}(x)}{n+1}\]- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
- sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]¶
Generates the Andre polynomial \(\mathcal{A}_n(x)\).
This is the Appell sequence where the constant coefficients form the sequence of Euler numbers
euler(n)
. As such they have integer coefficients and parities matching the parity of \(n\).Luschny calls these the Swiss-knife polynomials because their values at 0 and 1 can be simply transformed into both the Bernoulli and Euler numbers. Here they are called the Andre polynomials because \(|\mathcal{A}_n(n\bmod 2)|\) for \(n \ge 0\) generates what Luschny calls the Andre numbers, A000111 in the OEIS.
- Parameters:
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
Examples
>>> from sympy import bernoulli, euler, genocchi >>> from sympy.abc import x >>> from sympy.polys import andre_poly >>> andre_poly(9, x) x**9 - 36*x**7 + 630*x**5 - 5124*x**3 + 12465*x
>>> [andre_poly(n, 0) for n in range(11)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] >>> [euler(n) for n in range(11)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] >>> [andre_poly(n-1, 1) * n / (4**n - 2**n) for n in range(1, 11)] [1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> [bernoulli(n) for n in range(1, 11)] [1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> [-andre_poly(n-1, -1) * n / (-2)**(n-1) for n in range(1, 11)] [-1, -1, 0, 1, 0, -3, 0, 17, 0, -155] >>> [genocchi(n) for n in range(1, 11)] [-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
>>> [abs(andre_poly(n, n%2)) for n in range(11)] [1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
References
[R813]Peter Luschny, “An introduction to the Bernoulli function”, https://arxiv.org/abs/2009.06743
Manipulation of rational functions¶
- sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]¶
Denest and combine rational expressions using symbolic methods.
This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational subexpressions. No heroic measures are taken to minimize degree of the resulting numerator and denominator. To obtain completely reduced expression use
cancel()
. However,together()
can preserve as much as possible of the structure of the input expression in the output (no expansion is performed).A wide variety of objects can be put together including lists, tuples, sets, relational objects, integrals and others. It is also possible to transform interior of function applications, by setting
deep
flag toTrue
.By definition,
together()
is a complement toapart()
, soapart(together(expr))
should return expr unchanged. Note however, thattogether()
uses only symbolic methods, so it might be necessary to usecancel()
to perform algebraic simplification and minimize degree of the numerator and denominator.Examples
>>> from sympy import together, exp >>> from sympy.abc import x, y, z
>>> together(1/x + 1/y) (x + y)/(x*y) >>> together(1/x + 1/y + 1/z) (x*y + x*z + y*z)/(x*y*z)
>>> together(1/(x*y) + 1/y**2) (x + y)/(x*y**2)
>>> together(1/(1 + 1/x) + 1/(1 + 1/y)) (x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))
>>> together(exp(1/x + 1/y)) exp(1/y + 1/x) >>> together(exp(1/x + 1/y), deep=True) exp((x + y)/(x*y))
>>> together(1/exp(x) + 1/(x*exp(x))) (x + 1)*exp(-x)/x
>>> together(1/exp(2*x) + 1/(x*exp(3*x))) (x*exp(x) + 1)*exp(-3*x)/x
Partial fraction decomposition¶
- sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]¶
Compute partial fraction decomposition of a rational function.
Given a rational function
f
, computes the partial fraction decomposition off
. Two algorithms are available: One is based on the undertermined coefficients method, the other is Bronstein’s full partial fraction decomposition algorithm.The undetermined coefficients method (selected by
full=False
) uses polynomial factorization (and therefore accepts the same options as factor) for the denominator. Per default it works over the rational numbers, therefore decomposition of denominators with non-rational roots (e.g. irrational, complex roots) is not supported by default (see options of factor).Bronstein’s algorithm can be selected by using
full=True
and allows a decomposition of denominators with non-rational roots. A human-readable result can be obtained viadoit()
(see examples below).Examples
>>> from sympy.polys.partfrac import apart >>> from sympy.abc import x, y
By default, using the undetermined coefficients method:
>>> apart(y/(x + 2)/(x + 1), x) -y/(x + 2) + y/(x + 1)
The undetermined coefficients method does not provide a result when the denominators roots are not rational:
>>> apart(y/(x**2 + x + 1), x) y/(x**2 + x + 1)
You can choose Bronstein’s algorithm by setting
full=True
:>>> apart(y/(x**2 + x + 1), x, full=True) RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))
Calling
doit()
yields a human-readable result:>>> apart(y/(x**2 + x + 1), x, full=True).doit() (-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 - 2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2)
See also
- sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]¶
Compute partial fraction decomposition of a rational function and return the result in structured form.
Given a rational function
f
compute the partial fraction decomposition off
. Only Bronstein’s full partial fraction decomposition algorithm is supported by this method. The return value is highly structured and perfectly suited for further algorithmic treatment rather than being human-readable. The function returns a tuple holding three elements:The first item is the common coefficient, free of the variable \(x\) used for decomposition. (It is an element of the base field \(K\).)
The second item is the polynomial part of the decomposition. This can be the zero polynomial. (It is an element of \(K[x]\).)
The third part itself is a list of quadruples. Each quadruple has the following elements in this order:
The (not necessarily irreducible) polynomial \(D\) whose roots \(w_i\) appear in the linear denominator of a bunch of related fraction terms. (This item can also be a list of explicit roots. However, at the moment
apart_list
never returns a result this way, but the relatedassemble_partfrac_list
function accepts this format as input.)The numerator of the fraction, written as a function of the root \(w\)
The linear denominator of the fraction excluding its power exponent, written as a function of the root \(w\).
The power to which the denominator has to be raised.
On can always rebuild a plain expression by using the function
assemble_partfrac_list
.Examples
A first example:
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list >>> from sympy.abc import x, t
>>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1) >>> pfd = apart_list(f) >>> pfd (1, Poly(2*x + 4, x, domain='ZZ'), [(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd) 2*x + 4 + 4/(x - 1)
Second example:
>>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x) >>> pfd = apart_list(f) >>> pfd (-1, Poly(2/3, x, domain='QQ'), [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd) -2/3 - 2/(x - 2)
Another example, showing symbolic parameters:
>>> pfd = apart_list(t/(x**2 + x + t), x) >>> pfd (1, Poly(0, x, domain='ZZ[t]'), [(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'), Lambda(_a, -2*_a*t/(4*t - 1) - t/(4*t - 1)), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd) RootSum(_w**2 + _w + t, Lambda(_a, (-2*_a*t/(4*t - 1) - t/(4*t - 1))/(-_a + x)))
This example is taken from Bronstein’s original paper:
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) >>> pfd = apart_list(f) >>> pfd (1, Poly(0, x, domain='ZZ'), [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), (Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), (Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd) -4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
See also
References
- sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]¶
Reassemble a full partial fraction decomposition from a structured result obtained by the function
apart_list
.Examples
This example is taken from Bronstein’s original paper:
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list >>> from sympy.abc import x
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) >>> pfd = apart_list(f) >>> pfd (1, Poly(0, x, domain='ZZ'), [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), (Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), (Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)])
>>> assemble_partfrac_list(pfd) -4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
If we happen to know some roots we can provide them easily inside the structure:
>>> pfd = apart_list(2/(x**2-2)) >>> pfd (1, Poly(0, x, domain='ZZ'), [(Poly(_w**2 - 2, _w, domain='ZZ'), Lambda(_a, _a/2), Lambda(_a, -_a + x), 1)])
>>> pfda = assemble_partfrac_list(pfd) >>> pfda RootSum(_w**2 - 2, Lambda(_a, _a/(-_a + x)))/2
>>> pfda.doit() -sqrt(2)/(2*(x + sqrt(2))) + sqrt(2)/(2*(x - sqrt(2)))
>>> from sympy import Dummy, Poly, Lambda, sqrt >>> a = Dummy("a") >>> pfd = (1, Poly(0, x, domain='ZZ'), [([sqrt(2),-sqrt(2)], Lambda(a, a/2), Lambda(a, -a + x), 1)])
>>> assemble_partfrac_list(pfd) -sqrt(2)/(2*(x + sqrt(2))) + sqrt(2)/(2*(x - sqrt(2)))
See also
Dispersion of Polynomials¶
- sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]¶
Compute the dispersion set of two polynomials.
For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:
\[\begin{split}\operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}\end{split}\]For a single polynomial one defines \(\operatorname{J}(f) := \operatorname{J}(f, f)\).
Examples
>>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4]
We can even perform the computations for polynomials having symbolic coefficients:
>>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1]
See also
References
- sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]¶
Compute the dispersion of polynomials.
For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:
\[\begin{split}\operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}\end{split}\]and for a single polynomial \(\operatorname{dis}(f) := \operatorname{dis}(f, f)\). Note that we make the definition \(\max\{\} := -\infty\).
Examples
>>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo
The maximum of an empty set is defined to be \(-\infty\) as seen in this example.
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4]
We can even perform the computations for polynomials having symbolic coefficients:
>>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1]
See also
References