Control API¶
lti¶
- class sympy.physics.control.lti.TransferFunction(num, den, var)[source]¶
A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are
num
,den
, andvar
, wherenum
andden
are numerator and denominator polynomials of theTransferFunction
respectively, and the third argument is a complex variable of the Laplace transform used by these polynomials of the transfer function.num
andden
can be either polynomials or numbers, whereasvar
has to be aSymbol
.- Parameters:
num : Expr, Number
The numerator polynomial of the transfer function.
den : Expr, Number
The denominator polynomial of the transfer function.
var : Symbol
Complex variable of the Laplace transform used by the polynomials of the transfer function.
- Raises:
TypeError
When
var
is not a Symbol or whennum
orden
is not a number or a polynomial.ValueError
When
den
is zero.
Explanation
Generally, a dynamical system representing a physical model can be described in terms of Linear Ordinary Differential Equations like -
\(b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x\)
Here, \(x\) is the input signal and \(y\) is the output signal and superscript on both is the order of derivative (not exponent). Derivative is taken with respect to the independent variable, \(t\). Also, generally \(m\) is greater than \(n\).
It is not feasible to analyse the properties of such systems in their native form therefore, we use mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform of both the sides in the equation (at zero initial conditions), we get -
\(\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]\)
Using the linearity property of Laplace transform and also considering zero initial conditions (i.e. \(y(0^{-}) = 0\), \(y'(0^{-}) = 0\) and so on), the equation above gets translated to -
\(b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]\)
Now, applying Derivative property of Laplace transform,
\(b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]\)
Here, the superscript on \(s\) is exponent. Note that the zero initial conditions assumption, mentioned above, is very important and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above cannot be reached.
Collecting \(\mathcal{L}[y]\) and \(\mathcal{L}[x]\) terms from both the sides and taking the ratio \(\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }\), we get the typical rational form of transfer function.
The numerator of the transfer function is, therefore, the Laplace transform of the output signal (The signals are represented as functions of time) and similarly, the denominator of the transfer function is the Laplace transform of the input signal. It is also a convention to denote the input and output signal’s Laplace transform with capital alphabets like shown below.
\(H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }\)
\(s\), also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the equivalent variable \(t\), in the time domain. Transfer functions are sometimes also referred to as the Laplace transform of the system’s impulse response. Transfer function, \(H\), is represented as a rational function in \(s\) like,
\(H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}\)
Examples
>>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf1 TransferFunction(a + s, s**2 + s + 1, s) >>> tf1.num a + s >>> tf1.den s**2 + s + 1 >>> tf1.var s >>> tf1.args (a + s, s**2 + s + 1, s)
Any complex variable can be used for
var
.>>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf3 TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p)
To negate a transfer function the
-
operator can be prepended:>>> tf4 = TransferFunction(-a + s, p**2 + s, p) >>> -tf4 TransferFunction(a - s, p**2 + s, p) >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) >>> -tf5 TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s)
You can use a float or an integer (or other constants) as numerator and denominator:
>>> tf6 = TransferFunction(1/2, 4, s) >>> tf6.num 0.500000000000000 >>> tf6.den 4 >>> tf6.var s >>> tf6.args (0.5, 4, s)
You can take the integer power of a transfer function using the
**
operator:>>> tf7 = TransferFunction(s + a, s - a, s) >>> tf7**3 TransferFunction((a + s)**3, (-a + s)**3, s) >>> tf7**0 TransferFunction(1, 1, s) >>> tf8 = TransferFunction(p + 4, p - 3, p) >>> tf8**-1 TransferFunction(p - 3, p + 4, p)
Addition, subtraction, and multiplication of transfer functions can form unevaluated
Series
orParallel
objects.>>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) >>> tf10 = TransferFunction(s - p, s + 3, s) >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) >>> tf12 = TransferFunction(1 - s, s**2 + 4, s) >>> tf9 + tf10 Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - tf11 Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) >>> tf9 * tf10 Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - (tf9 + tf12) Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) >>> tf10 - (tf9 * tf12) Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) >>> tf11 * tf10 * tf9 Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) >>> tf9 * tf11 + tf10 * tf12 Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) >>> (tf9 + tf12) * (tf10 + tf11) Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)))
These unevaluated
Series
orParallel
objects can convert into the resultant transfer function using.doit()
method or by.rewrite(TransferFunction)
.>>> ((tf9 + tf10) * tf12).doit() TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
References
- dc_gain()[source]¶
Computes the gain of the response as the frequency approaches zero.
The DC gain is infinite for systems with pure integrators.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + 3, s**2 - 9, s) >>> tf1.dc_gain() -1/3 >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) >>> tf2.dc_gain() 0 >>> tf3 = TransferFunction(a*p**2 - b, s + b, s) >>> tf3.dc_gain() (a*p**2 - b)/b >>> tf4 = TransferFunction(1, s, s) >>> tf4.dc_gain() oo
- property den¶
Returns the denominator polynomial of the transfer function.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) >>> G1.den p**3 - 2*p + 4 >>> G2 = TransferFunction(3, 4, s) >>> G2.den 4
- eval_frequency(other)[source]¶
Returns the system response at any point in the real or complex plane.
Examples
>>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> from sympy import I >>> tf1 = TransferFunction(1, s**2 + 2*s + 1, s) >>> omega = 0.1 >>> tf1.eval_frequency(I*omega) 1/(0.99 + 0.2*I) >>> tf2 = TransferFunction(s**2, a*s + p, s) >>> tf2.eval_frequency(2) 4/(2*a + p) >>> tf2.eval_frequency(I*2) -4/(2*I*a + p)
- expand()[source]¶
Returns the transfer function with numerator and denominator in expanded form.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) >>> G1.expand() TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) >>> G2.expand() TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p)
- classmethod from_coeff_lists(
- num_list,
- den_list,
- var,
Creates a new
TransferFunction
efficiently from a list of coefficients.- Parameters:
num_list : Sequence
Sequence comprising of numerator coefficients.
den_list : Sequence
Sequence comprising of denominator coefficients.
var : Symbol
Complex variable of the Laplace transform used by the polynomials of the transfer function.
- Raises:
ZeroDivisionError
When the constructed denominator is zero.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> num = [1, 0, 2] >>> den = [3, 2, 2, 1] >>> tf = TransferFunction.from_coeff_lists(num, den, s) >>> tf TransferFunction(s**2 + 2, 3*s**3 + 2*s**2 + 2*s + 1, s)
# Create a Transfer Function with more than one variable >>> tf1 = TransferFunction.from_coeff_lists([p, 1], [2*p, 0, 4], s) >>> tf1 TransferFunction(p*s + 1, 2*p*s**2 + 4, s)
- classmethod from_rational_expression(
- expr,
- var=None,
Creates a new
TransferFunction
efficiently from a rational expression.- Parameters:
expr : Expr, Number
The rational expression representing the
TransferFunction
.var : Symbol, optional
Complex variable of the Laplace transform used by the polynomials of the transfer function.
- Raises:
ValueError
When
expr
is of typeNumber
and optional parametervar
is not passed.When
expr
has more than one variables and an optional parametervar
is not passed.ZeroDivisionError
When denominator of
expr
is zero or it hasComplexInfinity
in its numerator.
Examples
>>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) >>> tf1 = TransferFunction.from_rational_expression(expr1) >>> tf1 TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables >>> tf2 = TransferFunction.from_rational_expression(expr2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
In case of conflict between two or more variables in a expression, SymPy will raise a
ValueError
, ifvar
is not passed by the user.>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) Traceback (most recent call last): ... ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually.
This can be corrected by specifying the
var
parameter manually.>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) >>> tf TransferFunction(a*s + a, s**2 + s + 1, s)
var
also need to be specified whenexpr
is aNumber
>>> tf3 = TransferFunction.from_rational_expression(10, s) >>> tf3 TransferFunction(10, 1, s)
- classmethod from_zpk(zeros, poles, gain, var)[source]¶
Creates a new
TransferFunction
from given zeros, poles and gain.- Parameters:
zeros : Sequence
Sequence comprising of zeros of transfer function.
poles : Sequence
Sequence comprising of poles of transfer function.
gain : Number, Symbol, Expression
A scalar value specifying gain of the model.
var : Symbol
Complex variable of the Laplace transform used by the polynomials of the transfer function.
Examples
>>> from sympy.abc import s, p, k >>> from sympy.physics.control.lti import TransferFunction >>> zeros = [1, 2, 3] >>> poles = [6, 5, 4] >>> gain = 7 >>> tf = TransferFunction.from_zpk(zeros, poles, gain, s) >>> tf TransferFunction(7*(s - 3)*(s - 2)*(s - 1), (s - 6)*(s - 5)*(s - 4), s)
# Create a Transfer Function with variable poles and zeros >>> tf1 = TransferFunction.from_zpk([p, k], [p + k, p - k], 2, s) >>> tf1 TransferFunction(2*(-k + s)*(-p + s), (-k - p + s)*(k - p + s), s)
# Complex poles or zeros are acceptable >>> tf2 = TransferFunction.from_zpk([0], [1-1j, 1+1j, 2], -2, s) >>> tf2 TransferFunction(-2*s, (s - 2)*(s - 1.0 - 1.0*I)*(s - 1.0 + 1.0*I), s)
- property is_biproper¶
Returns True if degree of the numerator polynomial is equal to degree of the denominator polynomial, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_biproper True >>> tf2 = TransferFunction(p**2, p + a, p) >>> tf2.is_biproper False
- property is_proper¶
Returns True if degree of the numerator polynomial is less than or equal to degree of the denominator polynomial, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf1.is_proper False >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) >>> tf2.is_proper True
- is_stable()[source]¶
Returns True if the transfer function is asymptotically stable; else False.
This would not check the marginal or conditional stability of the system.
Examples
>>> from sympy.abc import s, p, a >>> from sympy import symbols >>> from sympy.physics.control.lti import TransferFunction >>> q, r = symbols('q, r', negative=True) >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) >>> tf1.is_stable() True >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) >>> tf2.is_stable() False >>> tf3 = TransferFunction(4, q*s - r, s) >>> tf3.is_stable() False >>> tf4 = TransferFunction(p + 1, a*p - s**2, p) >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability True
- property is_strictly_proper¶
Returns True if degree of the numerator polynomial is strictly less than degree of the denominator polynomial, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_strictly_proper False >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf2.is_strictly_proper True
- property num¶
Returns the numerator polynomial of the transfer function.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) >>> G1.num p*s + s**2 + 3 >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) >>> G2.num (p - 3)*(p + 5)
- poles()[source]¶
Returns the poles of a transfer function.
Examples
>>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.poles() [-5, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.poles() [I, I, -I, -I] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.poles() [-p/a]
- to_expr()[source]¶
Converts a
TransferFunction
object to SymPy Expr.Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> from sympy import Expr >>> tf1 = TransferFunction(s, a*s**2 + 1, s) >>> tf1.to_expr() s/(a*s**2 + 1) >>> isinstance(_, Expr) True >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) >>> tf2.to_expr() 1/((b - p)*(3*b + p)) >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) >>> tf3.to_expr() ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
- property var¶
Returns the complex variable of the Laplace transform used by the polynomials of the transfer function.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G1.var p >>> G2 = TransferFunction(0, s - 5, s) >>> G2.var s
- zeros()[source]¶
Returns the zeros of a transfer function.
Examples
>>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.zeros() [-3, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.zeros() [1, 1] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.zeros() [0, 0]
- class sympy.physics.control.lti.Series(*args, evaluate=False)[source]¶
A class for representing a series configuration of SISO systems.
- Parameters:
args : SISOLinearTimeInvariant
SISO systems in a series configuration.
evaluate : Boolean, Keyword
When passed
True
, returns the equivalentSeries(*args).doit()
. Set toFalse
by default.- Raises:
ValueError
When no argument is passed.
var
attribute is not same for every system.TypeError
Any of the passed
*args
has unsupported typeA combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, SISO in this case.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy import Matrix >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel, StateSpace >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> S1 = Series(tf1, tf2) >>> S1 Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> S1.var s >>> S2 = Series(tf2, Parallel(tf3, -tf1)) >>> S2 Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> S2.var s >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) >>> S3 Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> S3.var s
You can get the resultant transfer function by using
.doit()
method:>>> S3 = Series(tf1, tf2, -tf3) >>> S3.doit() TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> S4 = Series(tf2, Parallel(tf1, -tf3)) >>> S4.doit() TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
You can also connect StateSpace which results in SISO
>>> A1 = Matrix([[-1]]) >>> B1 = Matrix([[1]]) >>> C1 = Matrix([[-1]]) >>> D1 = Matrix([1]) >>> A2 = Matrix([[0]]) >>> B2 = Matrix([[1]]) >>> C2 = Matrix([[1]]) >>> D2 = Matrix([[0]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> S5 = Series(ss1, ss2) >>> S5 Series(StateSpace(Matrix([[-1]]), Matrix([[1]]), Matrix([[-1]]), Matrix([[1]])), StateSpace(Matrix([[0]]), Matrix([[1]]), Matrix([[1]]), Matrix([[0]]))) >>> S5.doit() StateSpace(Matrix([ [-1, 0], [-1, 0]]), Matrix([ [1], [1]]), Matrix([[0, 1]]), Matrix([[0]]))
Notes
All the transfer functions should use the same complex variable
var
of the Laplace transform.See also
- doit(**hints)[source]¶
Returns the resultant transfer function or StateSpace obtained after evaluating the series interconnection.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Series(tf2, tf1).doit() TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) >>> Series(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s)
Notes
If a series connection contains only TransferFunction components, the equivalent system returned will be a TransferFunction. However, if a StateSpace object is used in any of the arguments, the output will be a StateSpace object.
- property is_biproper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p, s**2, s) >>> tf3 = TransferFunction(s**2, 1, s) >>> S1 = Series(tf1, -tf2) >>> S1.is_biproper False >>> S2 = Series(tf2, tf3) >>> S2.is_biproper True
- property is_proper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> S1 = Series(-tf2, tf1) >>> S1.is_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_proper True
- property is_strictly_proper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) >>> tf3 = TransferFunction(1, s**2 + s + 1, s) >>> S1 = Series(tf1, tf2) >>> S1.is_strictly_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_strictly_proper True
- property var¶
Returns the complex variable used by all the transfer functions.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Series(G1, G2).var p >>> Series(-G3, Parallel(G1, G2)).var p
- class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]¶
A class for representing a parallel configuration of SISO systems.
- Parameters:
args : SISOLinearTimeInvariant
SISO systems in a parallel arrangement.
evaluate : Boolean, Keyword
When passed
True
, returns the equivalentParallel(*args).doit()
. Set toFalse
by default.- Raises:
ValueError
When no argument is passed.
var
attribute is not same for every system.TypeError
Any of the passed
*args
has unsupported typeA combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed.
Examples
>>> from sympy import Matrix >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series, StateSpace >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> P1 = Parallel(tf1, tf2) >>> P1 Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> P1.var s >>> P2 = Parallel(tf2, Series(tf3, -tf1)) >>> P2 Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> P2.var s >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) >>> P3 Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> P3.var s
You can get the resultant transfer function by using
.doit()
method:>>> Parallel(tf1, tf2, -tf3).doit() TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> Parallel(tf2, Series(tf1, -tf3)).doit() TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
Parallel can be used to connect SISO
StateSpace
systems together.>>> A1 = Matrix([[-1]]) >>> B1 = Matrix([[1]]) >>> C1 = Matrix([[-1]]) >>> D1 = Matrix([1]) >>> A2 = Matrix([[0]]) >>> B2 = Matrix([[1]]) >>> C2 = Matrix([[1]]) >>> D2 = Matrix([[0]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> P4 = Parallel(ss1, ss2) >>> P4 Parallel(StateSpace(Matrix([[-1]]), Matrix([[1]]), Matrix([[-1]]), Matrix([[1]])), StateSpace(Matrix([[0]]), Matrix([[1]]), Matrix([[1]]), Matrix([[0]])))
doit()
can be used to findStateSpace
equivalent for the system containingStateSpace
objects.>>> P4.doit() StateSpace(Matrix([ [-1, 0], [ 0, 0]]), Matrix([ [1], [1]]), Matrix([[-1, 1]]), Matrix([[1]])) >>> P4.rewrite(TransferFunction) TransferFunction(s*(s + 1) + 1, s*(s + 1), s)
Notes
All the transfer functions should use the same complex variable
var
of the Laplace transform.See also
- doit(**hints)[source]¶
Returns the resultant transfer function or state space obtained by parallel connection of transfer functions or state space objects.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Parallel(tf2, tf1).doit() TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) >>> Parallel(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
- property is_biproper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p**2, p + s, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, -tf2) >>> P1.is_biproper True >>> P2 = Parallel(tf2, tf3) >>> P2.is_biproper False
- property is_proper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(-tf2, tf1) >>> P1.is_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_proper True
- property is_strictly_proper¶
Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, tf2) >>> P1.is_strictly_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_strictly_proper True
- property var¶
Returns the complex variable used by all the transfer functions.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Parallel(G1, G2).var p >>> Parallel(-G3, Series(G1, G2)).var p
- class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]¶
A class for representing closed-loop feedback interconnection between two SISO input/output systems.
The first argument,
sys1
, is the feedforward part of the closed-loop system or in simple words, the dynamical model representing the process to be controlled. The second argument,sys2
, is the feedback system and controls the fed back signal tosys1
. Bothsys1
andsys2
can either beSeries
,StateSpace
orTransferFunction
objects.- Parameters:
sys1 : Series, StateSpace, TransferFunction
The feedforward path system.
sys2 : Series, StateSpace, TransferFunction, optional
The feedback path system (often a feedback controller). It is the model sitting on the feedback path.
If not specified explicitly, the sys2 is assumed to be unit (1.0) transfer function.
sign : int, optional
The sign of feedback. Can either be
1
(for positive feedback) or-1
(for negative feedback). Default value is \(-1\).- Raises:
ValueError
When
sys1
andsys2
are not using the same complex variable of the Laplace transform.When a combination of
sys1
andsys2
yields zero denominator.TypeError
When either
sys1
orsys2
is not aSeries
,StateSpace
orTransferFunction
object.
Examples
>>> from sympy import Matrix >>> from sympy.abc import s >>> from sympy.physics.control.lti import StateSpace, TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1 Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) >>> F1.var s >>> F1.args (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
You can get the feedforward and feedback path systems by using
.sys1
and.sys2
respectively.>>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s)
You can get the resultant closed loop transfer function obtained by negative feedback interconnection using
.doit()
method.>>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> C = TransferFunction(5*s + 10, s + 10, s) >>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s)
To negate a
Feedback
object, the-
operator can be prepended:>>> -F1 Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) >>> -F2 Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1)
Feedback
can also be used to connect SISOStateSpace
systems together.>>> A1 = Matrix([[-1]]) >>> B1 = Matrix([[1]]) >>> C1 = Matrix([[-1]]) >>> D1 = Matrix([1]) >>> A2 = Matrix([[0]]) >>> B2 = Matrix([[1]]) >>> C2 = Matrix([[1]]) >>> D2 = Matrix([[0]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> F3 = Feedback(ss1, ss2) >>> F3 Feedback(StateSpace(Matrix([[-1]]), Matrix([[1]]), Matrix([[-1]]), Matrix([[1]])), StateSpace(Matrix([[0]]), Matrix([[1]]), Matrix([[1]]), Matrix([[0]])), -1)
doit()
can be used to findStateSpace
equivalent for the system containingStateSpace
objects.>>> F3.doit() StateSpace(Matrix([ [-1, -1], [-1, -1]]), Matrix([ [1], [1]]), Matrix([[-1, -1]]), Matrix([[1]]))
We can also find the equivalent
TransferFunction
by usingrewrite(TransferFunction)
method.>>> F3.rewrite(TransferFunction) TransferFunction(s, s + 2, s)
See also
- property den¶
Returns the denominator of the closed loop feedback model.
- doit(cancel=False, expand=False, **hints)[source]¶
Returns the resultant transfer function or state space obtained by feedback connection of transfer functions or state space objects.
Examples
>>> from sympy.abc import s >>> from sympy import Matrix >>> from sympy.physics.control.lti import TransferFunction, Feedback, StateSpace >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> F2 = Feedback(G, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
Use kwarg
expand=True
to expand the resultant transfer function. Usecancel=True
to cancel out the common terms in numerator and denominator.>>> F2.doit(cancel=True, expand=True) TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) >>> F2.doit(expand=True) TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
If the connection contain any
StateSpace
object thendoit()
will return the equivalentStateSpace
object.>>> A1 = Matrix([[-1.5, -2], [1, 0]]) >>> B1 = Matrix([0.5, 0]) >>> C1 = Matrix([[0, 1]]) >>> A2 = Matrix([[0, 1], [-5, -2]]) >>> B2 = Matrix([0, 3]) >>> C2 = Matrix([[0, 1]]) >>> ss1 = StateSpace(A1, B1, C1) >>> ss2 = StateSpace(A2, B2, C2) >>> F3 = Feedback(ss1, ss2) >>> F3.doit() StateSpace(Matrix([ [-1.5, -2, 0, -0.5], [ 1, 0, 0, 0], [ 0, 0, 0, 1], [ 0, 3, -5, -2]]), Matrix([ [0.5], [ 0], [ 0], [ 0]]), Matrix([[0, 1, 0, 0]]), Matrix([[0]]))
- property num¶
Returns the numerator of the closed loop feedback system.
- property sensitivity¶
Returns the sensitivity function of the feedback loop.
Sensitivity of a Feedback system is the ratio of change in the open loop gain to the change in the closed loop gain.
Note
This method would not return the complementary sensitivity function.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - p, p + 2, p) >>> F_1 = Feedback(P, C) >>> F_1.sensitivity 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1)
- property sign¶
Returns the type of MIMO Feedback model.
1
for Positive and-1
for Negative.
- property sys1¶
Returns the feedforward system of the feedback interconnection.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys1 TransferFunction(1, 1, p)
- property sys2¶
Returns the feedback controller of the feedback interconnection.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys2 Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p))
- to_expr()[source]¶
Converts a
Feedback
object to SymPy Expr.Examples
>>> from sympy.abc import s, a, b >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> from sympy import Expr >>> tf1 = TransferFunction(a+s, 1, s) >>> tf2 = TransferFunction(b+s, 1, s) >>> fd1 = Feedback(tf1, tf2) >>> fd1.to_expr() (a + s)/((a + s)*(b + s) + 1) >>> isinstance(_, Expr) True
- property var¶
Returns the complex variable of the Laplace transform used by all the transfer functions involved in the feedback interconnection.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.var s >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.var p
- class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]¶
A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function.
It is a matrix of transfer functions (
TransferFunction
, SISO-Series
or SISO-Parallel
). There is only one argument,arg
which is also the compulsory argument.arg
is expected to be strictly of the type list of lists which holds the transfer functions or reducible to transfer functions.- Parameters:
arg : Nested
List
(strictly).Users are expected to input a nested list of
TransferFunction
,Series
and/orParallel
objects.
Examples
Note
pprint()
can be used for better visualization ofTransferFunctionMatrix
objects.>>> from sympy.abc import s, p, a >>> from sympy import pprint >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) >>> tf_3 = TransferFunction(3, s + 2, s) >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) >>> tfm_1.var s >>> tfm_1.num_inputs 1 >>> tfm_1.num_outputs 3 >>> tfm_1.shape (3, 1) >>> tfm_1.args (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) >>> tfm_2 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t}
TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions
>>> tfm_2.transpose() TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(_, use_unicode=False) [ 4 ] [ a + s p - 3*p + 2 3 ] [---------- ------------ ----- ] [ 2 p + s s + 2 ] [s + s + 1 ] [ ] [ 4 ] [ -3 -a - s - p + 3*p - 2] [ ----- ---------- --------------] [ s + 2 2 p + s ] [ s + s + 1 ]{t}
>>> tf_5 = TransferFunction(5, s, s) >>> tf_6 = TransferFunction(5*s, (2 + s**2), s) >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) >>> tf_8 = TransferFunction(5, 1, s) >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) >>> tfm_3 TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) >>> pprint(tfm_3, use_unicode=False) [ 5 5*s ] [ - ------] [ s 2 ] [ s + 2] [ ] [ 5 5 ] [---------- - ] [ / 2 \ 1 ] [s*\s + 2/ ]{t} >>> tfm_3.var s >>> tfm_3.shape (2, 2) >>> tfm_3.num_outputs 2 >>> tfm_3.num_inputs 2 >>> tfm_3.args (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),)
To access the
TransferFunction
at any index in theTransferFunctionMatrix
, use the index notation.>>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes TransferFunction(5, s*(s**2 + 2), s) >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. TransferFunction(5, s, s) >>> tfm_3[:, 0] # gives the first column TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) >>> pprint(_, use_unicode=False) [ 5 ] [ - ] [ s ] [ ] [ 5 ] [----------] [ / 2 \] [s*\s + 2/]{t} >>> tfm_3[0, :] # gives the first row TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) >>> pprint(_, use_unicode=False) [5 5*s ] [- ------] [s 2 ] [ s + 2]{t}
To negate a transfer function matrix,
-
operator can be prepended:>>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) >>> -tfm_4 TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) >>> -tfm_5 TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s))))
subs()
returns theTransferFunctionMatrix
object with the value substituted in the expression. This will not mutate your originalTransferFunctionMatrix
.>>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ a + s -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -a - s ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t}
subs()
also supports multiple substitutions.>>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ s + 1 -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -s - 1 ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t}
Users can reduce the
Series
andParallel
elements of the matrix toTransferFunction
by usingdoit()
.>>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) >>> tfm_6 TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) >>> pprint(tfm_6, use_unicode=False) [-a + p 3 -a + p 3 ] [-------*----- ------- + -----] [9*s - 9 s + 2 9*s - 9 s + 2]{t} >>> tfm_6.doit() TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) >>> pprint(_, use_unicode=False) [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] [----------------- ----------------------------] [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} >>> tf_9 = TransferFunction(1, s, s) >>> tf_10 = TransferFunction(1, s**2, s) >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) >>> tfm_7 TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) >>> pprint(tfm_7, use_unicode=False) [ 1 1 ] [---- - ] [ 2 s ] [s*s ] [ ] [ 1 1 1] [ -- -- + -] [ 2 2 s] [ s s ]{t} >>> tfm_7.doit() TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) >>> pprint(_, use_unicode=False) [1 1 ] [-- - ] [ 3 s ] [s ] [ ] [ 2 ] [1 s + s] [-- ------] [ 2 3 ] [s s ]{t}
Addition, subtraction, and multiplication of transfer function matrices can form unevaluated
Series
orParallel
objects.For addition and subtraction: All the transfer function matrices must have the same shape.
For multiplication (C = A * B): The number of inputs of the first transfer function matrix (A) must be equal to the number of outputs of the second transfer function matrix (B).
Also, use pretty-printing (
pprint
) to analyse better.>>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) >>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) >>> tfm_8 + tfm_10 MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) >>> pprint(_, use_unicode=False) [ 3 ] [ a + s ] [ ----- ] [ ---------- ] [ s + 2 ] [ 2 ] [ ] [ s + s + 1 ] [ 4 ] [ ] [p - 3*p + 2] [ 4 ] [------------] + [p - 3*p + 2] [ p + s ] [------------] [ ] [ p + s ] [ -a - s ] [ ] [ ---------- ] [ -a + p ] [ 2 ] [ ------- ] [ s + s + 1 ]{t} [ 9*s - 9 ]{t} >>> -tfm_10 - tfm_8 MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) >>> pprint(_, use_unicode=False) [ -a - s ] [ -3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [- p + 3*p - 2] [- p + 3*p - 2] + [--------------] [--------------] [ p + s ] [ p + s ] [ ] [ ] [ a + s ] [ a - p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ ] *[------------] [ 4 ] [ p + s ] [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 * tfm_9 MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ -3 ] [ ] *[------------] *[-----] [ 4 ] [ p + s ] [s + 2]{t} [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_10 + tfm_8*tfm_9 MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) >>> pprint(_, use_unicode=False) [ a + s ] [ 3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [p - 3*p + 2] [ -3 ] [p - 3*p + 2] + [------------] *[-----] [------------] [ p + s ] [s + 2]{t} [ p + s ] [ ] [ ] [ -a - s ] [ -a + p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t}
These unevaluated
Series
orParallel
objects can convert into the resultant transfer function matrix using.doit()
method or by.rewrite(TransferFunctionMatrix)
.>>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),)))
See also
- elem_poles()[source]¶
Returns the poles of each element of the
TransferFunctionMatrix
.Note
Actual poles of a MIMO system are NOT the poles of individual elements.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_poles() [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]]
See also
- elem_zeros()[source]¶
Returns the zeros of each element of the
TransferFunctionMatrix
.Note
Actual zeros of a MIMO system are NOT the zeros of individual elements.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_zeros() [[[], [-6]], [[-3], [4, 5]]]
See also
- eval_frequency(other)[source]¶
Evaluates system response of each transfer function in the
TransferFunctionMatrix
at any point in the real or complex plane.Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> from sympy import I >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) >>> tfm_1.eval_frequency(2) Matrix([ [ 1, 2/3], [5/12, 3/2]]) >>> tfm_1.eval_frequency(I*2) Matrix([ [ 3/5 - 6*I/5, -I], [3/20 - 11*I/20, -101/74 + 23*I/74]])
- classmethod from_Matrix(matrix, var)[source]¶
Creates a new
TransferFunctionMatrix
efficiently from a SymPy Matrix ofExpr
objects.- Parameters:
matrix :
ImmutableMatrix
havingExpr
/Number
elements.var : Symbol
Complex variable of the Laplace transform which will be used by the all the
TransferFunction
objects in theTransferFunctionMatrix
.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> M = Matrix([[s, 1/s], [1/(s+1), s]]) >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) >>> pprint(M_tf, use_unicode=False) [ s 1] [ - -] [ 1 s] [ ] [ 1 s] [----- -] [s + 1 1]{t} >>> M_tf.elem_poles() [[[], [0]], [[-1], []]] >>> M_tf.elem_zeros() [[[0], []], [[], [0]]]
- property num_inputs¶
Returns the number of inputs of the system.
Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> G1 = TransferFunction(s + 3, s**2 - 3, s) >>> G2 = TransferFunction(4, s**2, s) >>> G3 = TransferFunction(p**2 + s**2, p - 3, s) >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) >>> tfm_1.num_inputs 3
See also
- property num_outputs¶
Returns the number of outputs of the system.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix >>> M_1 = Matrix([[s], [1/s]]) >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) >>> print(TFM) TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) >>> TFM.num_outputs 2
See also
- property shape¶
Returns the shape of the transfer function matrix, that is,
(# of outputs, # of inputs)
.Examples
>>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) >>> tf3 = TransferFunction(3, 4, p) >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) >>> tfm1.shape (1, 2) >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) >>> tfm2.shape (2, 2)
- transpose()[source]¶
Returns the transpose of the
TransferFunctionMatrix
(switched input and output layers).
- property var¶
Returns the complex variable used by all the transfer functions or
Series
/Parallel
objects in a transfer function matrix.Examples
>>> from sympy.abc import p, s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) >>> S1 = Series(G1, G2) >>> S2 = Series(-G3, Parallel(G2, -G1)) >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> tfm1.var p >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) >>> tfm2.var p >>> tfm3 = TransferFunctionMatrix([[G4]]) >>> tfm3.var s
- class sympy.physics.control.lti.PIDController(kp=kp, ki=ki, kd=kd, tf=0, var=s)[source]¶
A class for representing PID (Proportional-Integral-Derivative) controllers in control systems. The PIDController class is a subclass of TransferFunction, representing the controller’s transfer function in the Laplace domain. The arguments are
kp
,ki
,kd
,tf
, andvar
, wherekp
,ki
, andkd
are the proportional, integral, and derivative gains respectively.``tf`` is the derivative filter time constant, which can be used to filter out the noise andvar
is the complex variable used in the transfer function.- Parameters:
kp : Expr, Number
Proportional gain. Defaults to
Symbol('kp')
if not specified.ki : Expr, Number
Integral gain. Defaults to
Symbol('ki')
if not specified.kd : Expr, Number
Derivative gain. Defaults to
Symbol('kd')
if not specified.tf : Expr, Number
Derivative filter time constant. Defaults to
0
if not specified.var : Symbol
The complex frequency variable. Defaults to
s
if not specified.
Examples
>>> from sympy import symbols >>> from sympy.physics.control.lti import PIDController >>> kp, ki, kd = symbols('kp ki kd') >>> p1 = PIDController(kp, ki, kd) >>> print(p1) PIDController(kp, ki, kd, 0, s) >>> p1.doit() TransferFunction(kd*s**2 + ki + kp*s, s, s) >>> p1.kp kp >>> p1.ki ki >>> p1.kd kd >>> p1.tf 0 >>> p1.var s >>> p1.to_expr() (kd*s**2 + ki + kp*s)/s
See also
References
- property kd¶
Returns the Derivative gain (kd) of the PIDController.
- property ki¶
Returns the Integral gain (ki) of the PIDController.
- property kp¶
Returns the Proportional gain (kp) of the PIDController.
- property tf¶
Returns the Derivative filter time constant (tf) of the PIDController.
- class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]¶
A class for representing a series configuration of MIMO systems.
- Parameters:
args : MIMOLinearTimeInvariant
MIMO systems in a series configuration.
evaluate : Boolean, Keyword
When passed
True
, returns the equivalentMIMOSeries(*args).doit()
. Set toFalse
by default.- Raises:
ValueError
When no argument is passed.
var
attribute is not same for every system.num_outputs
of the MIMO system is not equal to thenum_inputs
of its adjacent MIMO system. (Matrix multiplication constraint, basically)TypeError
Any of the passed
*args
has unsupported typeA combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix, StateSpace >>> from sympy import Matrix, pprint >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) >>> MIMOSeries(tfm_c, tfm_b, tfm_a) MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) >>> pprint(_, use_unicode=False) # For Better Visualization [5*s] [1 s] [---] [5 1 ] [- -] [ 1 ] [- ----] [1 1] [ ] *[1 2] *[ ] [ 5 ] [ 6*s ]{t} [5 1] [ - ] [- -] [ 1 ]{t} [s 1]{t} >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). [ 4 4 ] [150*s + 25*s 150*s + 5*s] [------------- ------------] [ 3 2 ] [ 6*s 6*s ] [ ] [ 3 3 ] [ 150*s + 25 150*s + 5 ] [ ----------- ---------- ] [ 3 2 ] [ 6*s 6*s ]{t} >>> a1 = Matrix([[4, 1], [2, -3]]) >>> b1 = Matrix([[5, 2], [-3, -3]]) >>> c1 = Matrix([[2, -4], [0, 1]]) >>> d1 = Matrix([[3, 2], [1, -1]]) >>> a2 = Matrix([[-3, 4, 2], [-1, -3, 0], [2, 5, 3]]) >>> b2 = Matrix([[1, 4], [-3, -3], [-2, 1]]) >>> c2 = Matrix([[4, 2, -3], [1, 4, 3]]) >>> d2 = Matrix([[-2, 4], [0, 1]]) >>> ss1 = StateSpace(a1, b1, c1, d1) #2 inputs, 2 outputs >>> ss2 = StateSpace(a2, b2, c2, d2) #2 inputs, 2 outputs >>> S1 = MIMOSeries(ss1, ss2) #(2 inputs, 2 outputs) -> (2 inputs, 2 outputs) >>> S1 MIMOSeries(StateSpace(Matrix([ [4, 1], [2, -3]]), Matrix([ [ 5, 2], [-3, -3]]), Matrix([ [2, -4], [0, 1]]), Matrix([ [3, 2], [1, -1]])), StateSpace(Matrix([ [-3, 4, 2], [-1, -3, 0], [ 2, 5, 3]]), Matrix([ [ 1, 4], [-3, -3], [-2, 1]]), Matrix([ [4, 2, -3], [1, 4, 3]]), Matrix([ [-2, 4], [ 0, 1]]))) >>> S1.doit() StateSpace(Matrix([ [ 4, 1, 0, 0, 0], [ 2, -3, 0, 0, 0], [ 2, 0, -3, 4, 2], [-6, 9, -1, -3, 0], [-4, 9, 2, 5, 3]]), Matrix([ [ 5, 2], [ -3, -3], [ 7, -2], [-12, -3], [ -5, -5]]), Matrix([ [-4, 12, 4, 2, -3], [ 0, 1, 1, 4, 3]]), Matrix([ [-2, -8], [ 1, -1]]))
Notes
All the transfer function matrices should use the same complex variable
var
of the Laplace transform.MIMOSeries(A, B)
is not equivalent toA*B
. It is always in the reverse order, that isB*A
.See also
- doit(cancel=False, **kwargs)[source]¶
Returns the resultant obtained after evaluating the MIMO systems arranged in a series configuration. For TransferFunction systems it returns a TransferFunctionMatrix and for StateSpace systems it returns the resultant StateSpace system.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) >>> MIMOSeries(tfm2, tfm1).doit() TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s))))
- property num_inputs¶
Returns the number of input signals of the series system.
- property num_outputs¶
Returns the number of output signals of the series system.
- property shape¶
Returns the shape of the equivalent MIMO system.
- property var¶
Returns the complex variable used by all the transfer functions.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> MIMOSeries(tfm_2, tfm_1).var p
- class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]¶
A class for representing a parallel configuration of MIMO systems.
- Parameters:
args : MIMOLinearTimeInvariant
MIMO Systems in a parallel arrangement.
evaluate : Boolean, Keyword
When passed
True
, returns the equivalentMIMOParallel(*args).doit()
. Set toFalse
by default.- Raises:
ValueError
When no argument is passed.
var
attribute is not same for every system.All MIMO systems passed do not have same shape.
TypeError
Any of the passed
*args
has unsupported typeA combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case.
Examples
>>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel, StateSpace >>> from sympy import Matrix, pprint >>> expr_1 = 1/s >>> expr_2 = s/(s**2-1) >>> expr_3 = (2 + s)/(s**2 - 1) >>> expr_4 = 5 >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) >>> MIMOParallel(tfm_a, tfm_b, tfm_c) MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) >>> pprint(_, use_unicode=False) # For Better Visualization [ 1 s ] [ s 1 ] [s + 2 5 ] [ - ------] [------ - ] [------ - ] [ s 2 ] [ 2 s ] [ 2 1 ] [ s - 1] [s - 1 ] [s - 1 ] [ ] + [ ] + [ ] [s + 2 5 ] [ 5 s + 2 ] [ 1 s ] [------ - ] [ - ------] [ - ------] [ 2 1 ] [ 1 2 ] [ s 2 ] [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) >>> pprint(_, use_unicode=False) [ 2 2 / 2 \ ] [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] [ -------------------- -----------------------] [ / 2 \ / 2 \ ] [ s*\s - 1/ s*\s - 1/ ] [ ] [ 2 / 2 \ 2 ] [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] [--------------------------------- -------------- ] [ / 2 \ 2 ] [ s*\s - 1/ s - 1 ]{t}
MIMOParallel
can also be used to connect MIMOStateSpace
systems.>>> A1 = Matrix([[4, 1], [2, -3]]) >>> B1 = Matrix([[5, 2], [-3, -3]]) >>> C1 = Matrix([[2, -4], [0, 1]]) >>> D1 = Matrix([[3, 2], [1, -1]]) >>> A2 = Matrix([[-3, 4, 2], [-1, -3, 0], [2, 5, 3]]) >>> B2 = Matrix([[1, 4], [-3, -3], [-2, 1]]) >>> C2 = Matrix([[4, 2, -3], [1, 4, 3]]) >>> D2 = Matrix([[-2, 4], [0, 1]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> p1 = MIMOParallel(ss1, ss2) >>> p1 MIMOParallel(StateSpace(Matrix([ [4, 1], [2, -3]]), Matrix([ [ 5, 2], [-3, -3]]), Matrix([ [2, -4], [0, 1]]), Matrix([ [3, 2], [1, -1]])), StateSpace(Matrix([ [-3, 4, 2], [-1, -3, 0], [ 2, 5, 3]]), Matrix([ [ 1, 4], [-3, -3], [-2, 1]]), Matrix([ [4, 2, -3], [1, 4, 3]]), Matrix([ [-2, 4], [ 0, 1]])))
doit()
can be used to findStateSpace
equivalent for the system containingStateSpace
objects.>>> p1.doit() StateSpace(Matrix([ [4, 1, 0, 0, 0], [2, -3, 0, 0, 0], [0, 0, -3, 4, 2], [0, 0, -1, -3, 0], [0, 0, 2, 5, 3]]), Matrix([ [ 5, 2], [-3, -3], [ 1, 4], [-3, -3], [-2, 1]]), Matrix([ [2, -4, 4, 2, -3], [0, 1, 1, 4, 3]]), Matrix([ [1, 6], [1, 0]]))
Notes
All the transfer function matrices should use the same complex variable
var
of the Laplace transform.See also
- doit(**hints)[source]¶
Returns the resultant transfer function matrix or StateSpace obtained after evaluating the MIMO systems arranged in a parallel configuration.
Examples
>>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) >>> MIMOParallel(tfm_1, tfm_2).doit() TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s))))
- property num_inputs¶
Returns the number of input signals of the parallel system.
- property num_outputs¶
Returns the number of output signals of the parallel system.
- property shape¶
Returns the shape of the equivalent MIMO system.
- property var¶
Returns the complex variable used by all the systems.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(p**2, p**2 - 1, p) >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) >>> MIMOParallel(tfm_a, tfm_b).var p
- class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]¶
A class for representing closed-loop feedback interconnection between two MIMO input/output systems.
- Parameters:
sys1 : MIMOSeries, TransferFunctionMatrix, StateSpace
The MIMO system placed on the feedforward path.
sys2 : MIMOSeries, TransferFunctionMatrix, StateSpace
The system placed on the feedback path (often a feedback controller).
sign : int, optional
The sign of feedback. Can either be
1
(for positive feedback) or-1
(for negative feedback). Default value is \(-1\).- Raises:
ValueError
When
sys1
andsys2
are not using the same complex variable of the Laplace transform.Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs.
When product of
sys1
andsys2
is not a square matrix.When the equivalent MIMO system is not invertible.
TypeError
When either
sys1
orsys2
is not aMIMOSeries
,TransferFunctionMatrix
or aStateSpace
object.
Examples
>>> from sympy import Matrix, pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import StateSpace, TransferFunctionMatrix, MIMOFeedback >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) >>> pprint(feedback, use_unicode=False) / [1 1] [10 0 ] \-1 [1 1] | [- -] [-- - ] | [- -] | [1 s] [1 1 ] | [1 s] |I + [ ] *[ ] | * [ ] | [0 1] [0 10] | [0 1] | [- -] [- --] | [- -] \ [1 1]{t} [1 1 ]{t}/ [1 1]{t}
To get the equivalent system matrix, use either
doit
orrewrite
method.>>> pprint(feedback.doit(), use_unicode=False) [1 1 ] [-- -----] [11 121*s] [ ] [0 1 ] [- -- ] [1 11 ]{t}
To negate the
MIMOFeedback
object, use-
operator.>>> neg_feedback = -feedback >>> pprint(neg_feedback.doit(), use_unicode=False) [-1 -1 ] [--- -----] [11 121*s] [ ] [ 0 -1 ] [ - --- ] [ 1 11 ]{t}
MIMOFeedback
can also be used to connect MIMOStateSpace
systems.>>> A1 = Matrix([[4, 1], [2, -3]]) >>> B1 = Matrix([[5, 2], [-3, -3]]) >>> C1 = Matrix([[2, -4], [0, 1]]) >>> D1 = Matrix([[3, 2], [1, -1]]) >>> A2 = Matrix([[-3, 4, 2], [-1, -3, 0], [2, 5, 3]]) >>> B2 = Matrix([[1, 4], [-3, -3], [-2, 1]]) >>> C2 = Matrix([[4, 2, -3], [1, 4, 3]]) >>> D2 = Matrix([[-2, 4], [0, 1]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> F1 = MIMOFeedback(ss1, ss2) >>> F1 MIMOFeedback(StateSpace(Matrix([ [4, 1], [2, -3]]), Matrix([ [ 5, 2], [-3, -3]]), Matrix([ [2, -4], [0, 1]]), Matrix([ [3, 2], [1, -1]])), StateSpace(Matrix([ [-3, 4, 2], [-1, -3, 0], [ 2, 5, 3]]), Matrix([ [ 1, 4], [-3, -3], [-2, 1]]), Matrix([ [4, 2, -3], [1, 4, 3]]), Matrix([ [-2, 4], [ 0, 1]])), -1)
doit()
can be used to findStateSpace
equivalent for the system containingStateSpace
objects.>>> F1.doit() StateSpace(Matrix([ [ 3, -3/4, -15/4, -37/2, -15], [ 7/2, -39/8, 9/8, 39/4, 9], [ 3, -41/4, -45/4, -51/2, -19], [-9/2, 129/8, 73/8, 171/4, 36], [-3/2, 47/8, 31/8, 85/4, 18]]), Matrix([ [-1/4, 19/4], [ 3/8, -21/8], [ 1/4, 29/4], [ 3/8, -93/8], [ 5/8, -35/8]]), Matrix([ [ 1, -15/4, -7/4, -21/2, -9], [1/2, -13/8, -13/8, -19/4, -3]]), Matrix([ [-1/4, 11/4], [ 1/8, 9/8]]))
See also
- doit(
- cancel=True,
- expand=False,
- **hints,
Returns the resultant transfer function matrix obtained by the feedback interconnection.
Examples
>>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s, 1 - s, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(5, 1, s) >>> tf4 = TransferFunction(s - 1, s, s) >>> tf5 = TransferFunction(0, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> pprint(F_1, use_unicode=False) / [ s 1 ] [5 0] \-1 [ s 1 ] | [----- - ] [- -] | [----- - ] | [1 - s s ] [1 1] | [1 - s s ] |I - [ ] *[ ] | * [ ] | [ 5 s - 1] [0 0] | [ 5 s - 1] | [ - -----] [- -] | [ - -----] \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} >>> pprint(F_1.doit(), use_unicode=False) [ -s s - 1 ] [------- ----------- ] [6*s - 1 s*(6*s - 1) ] [ ] [5*s - 5 (s - 1)*(6*s + 24)] [------- ------------------] [6*s - 1 s*(6*s - 1) ]{t}
If the user wants the resultant
TransferFunctionMatrix
object without canceling the common factors then thecancel
kwarg should be passedFalse
.>>> pprint(F_1.doit(cancel=False), use_unicode=False) [ s*(s - 1) s - 1 ] [ ----------------- ----------- ] [ (1 - s)*(6*s - 1) s*(6*s - 1) ] [ ] [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] [----------------------------------- -----------------------------------] [ (1 - s)*(6*s - 1) 2 ] [ s *(6*s - 1) ]{t}
If the user wants the expanded form of the resultant transfer function matrix, the
expand
kwarg should be passed asTrue
.>>> pprint(F_1.doit(expand=True), use_unicode=False) [ -s s - 1 ] [------- -------- ] [6*s - 1 2 ] [ 6*s - s ] [ ] [ 2 ] [5*s - 5 6*s + 18*s - 24] [------- ----------------] [6*s - 1 2 ] [ 6*s - s ]{t}
- property num_inputs¶
Returns the number of inputs of the system.
- property num_outputs¶
Returns the number of outputs of the system.
- property sensitivity¶
Returns the sensitivity function matrix of the feedback loop.
Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain.
Note
This method would not return the complementary sensitivity function.
Examples
>>> from sympy import pprint >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback >>> pprint(F_1.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] [---------------------------- -----------------------------] [ 4 3 2 5 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] [ ] [ 4 3 2 3 2 ] [ p - p - p + p 3*p - 6*p + 4*p - 1 ] [ -------------------------- -------------------------- ] [ 4 3 2 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] >>> pprint(F_2.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] [------------------------ --------------------------] [ 4 3 5 4 2 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] [ ] [ 4 3 2 4 3 ] [ p - p - p + p 2*p - 3*p + 2*p - 1 ] [ ------------------- --------------------- ] [ 4 3 4 3 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ]
- property sign¶
Returns the type of feedback interconnection of two models.
1
for Positive and-1
for Negative.
- property sys1¶
Returns the system placed on the feedforward path of the MIMO feedback interconnection.
Examples
>>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> F_1.sys1 TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [s + s + 1 1 ] [---------- - ] [ 2 s ] [s - s + 1 ] [ ] [ 2 ] [ 1 s + s + 1] [ - ----------] [ s 2 ] [ s - s + 1]{t}
- property sys2¶
Returns the feedback controller of the MIMO feedback interconnection.
Examples
>>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2) >>> F_1.sys2 TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [ s 1] [---------- -] [ 3 1] [s - s + 1 ] [ ] [ 1 1] [ - -] [ 1 s]{t}
- property var¶
Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop.
Examples
>>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_1.var p
- class sympy.physics.control.lti.StateSpace(A=None, B=None, C=None, D=None)[source]¶
State space model (ssm) of a linear, time invariant control system.
Represents the standard state-space model with A, B, C, D as state-space matrices. This makes the linear control system:
x’(t) = A * x(t) + B * u(t); x in R^n , u in R^k
y(t) = C * x(t) + D * u(t); y in R^m
where u(t) is any input signal, y(t) the corresponding output, and x(t) the system’s state.
- Parameters:
A : Matrix
The State matrix of the state space model.
B : Matrix
The Input-to-State matrix of the state space model.
C : Matrix
The State-to-Output matrix of the state space model.
D : Matrix
The Feedthrough matrix of the state space model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace
The easiest way to create a StateSpaceModel is via four matrices:
>>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> StateSpace(A, B, C, D) StateSpace(Matrix([ [1, 2], [1, 0]]), Matrix([ [1], [1]]), Matrix([[0, 1]]), Matrix([[0]]))
One can use less matrices. The rest will be filled with a minimum of zeros:
>>> StateSpace(A, B) StateSpace(Matrix([ [1, 2], [1, 0]]), Matrix([ [1], [1]]), Matrix([[0, 0]]), Matrix([[0]]))
See also
References
- property A¶
Returns the state matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.state_matrix Matrix([ [1, 2], [1, 0]])
- property B¶
Returns the input matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.input_matrix Matrix([ [1], [1]])
- property C¶
Returns the output matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.output_matrix Matrix([[0, 1]])
- property D¶
Returns the feedforward matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.feedforward_matrix Matrix([[0]])
- append(other)[source]¶
Returns the first model appended with the second model. The order is preserved.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A1 = Matrix([[1]]) >>> B1 = Matrix([[2]]) >>> C1 = Matrix([[-1]]) >>> D1 = Matrix([[-2]]) >>> A2 = Matrix([[-1]]) >>> B2 = Matrix([[-2]]) >>> C2 = Matrix([[1]]) >>> D2 = Matrix([[2]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> ss1.append(ss2) StateSpace(Matrix([ [1, 0], [0, -1]]), Matrix([ [2, 0], [0, -2]]), Matrix([ [-1, 0], [ 0, 1]]), Matrix([ [-2, 0], [ 0, 2]]))
- controllability_matrix()[source]¶
- Returns the controllability matrix of the system:
[B, A * B, A^2 * B, .. , A^(n-1) * B]; A in R^(n x n), B in R^(n x m)
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> ss.controllability_matrix() Matrix([ [0.5, -0.75], [ 0, 0.5]])
References
- controllable_subspace()[source]¶
Returns the controllable subspace of the state space model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> co_subspace = ss.controllable_subspace() >>> co_subspace [Matrix([ [0.5], [ 0]]), Matrix([ [-0.75], [ 0.5]])]
- dsolve(
- initial_conditions=None,
- input_vector=None,
- var=t,
- Returns \(y(t)\) or output of StateSpace given by the solution of equations:
x’(t) = A * x(t) + B * u(t) y(t) = C * x(t) + D * u(t)
- Parameters:
initial_conditions : Matrix
The initial conditions of \(x\) state vector. If not provided, it defaults to a zero vector.
input_vector : Matrix
The input vector for state space. If not provided, it defaults to a zero vector.
var : Symbol
The symbol representing time. If not provided, it defaults to \(t\).
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-2, 0], [1, -1]]) >>> B = Matrix([[1], [0]]) >>> C = Matrix([[2, 1]]) >>> ip = Matrix([5]) >>> i = Matrix([0, 0]) >>> ss = StateSpace(A, B, C) >>> ss.dsolve(input_vector=ip, initial_conditions=i).simplify() Matrix([[15/2 - 5*exp(-t) - 5*exp(-2*t)/2]])
If no input is provided it defaults to solving the system with zero initial conditions and zero input.
>>> ss.dsolve() Matrix([[0]])
References
- property feedforward_matrix¶
Returns the feedforward matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.feedforward_matrix Matrix([[0]])
- property input_matrix¶
Returns the input matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.input_matrix Matrix([ [1], [1]])
- is_controllable()[source]¶
Returns if the state space model is controllable.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> ss.is_controllable() True
- is_observable()[source]¶
Returns if the state space model is observable.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> ss.is_observable() True
- property num_inputs¶
Returns the number of inputs of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.num_inputs 1
- property num_outputs¶
Returns the number of outputs of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.num_outputs 1
- property num_states¶
Returns the number of states of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.num_states 2
- observability_matrix()[source]¶
- Returns the observability matrix of the state space model:
[C, C * A^1, C * A^2, .. , C * A^(n-1)]; A in R^(n x n), C in R^(m x k)
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> ob = ss.observability_matrix() >>> ob Matrix([ [0, 1], [1, 0]])
References
- observable_subspace()[source]¶
Returns the observable subspace of the state space model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[-1.5, -2], [1, 0]]) >>> B = Matrix([0.5, 0]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([1]) >>> ss = StateSpace(A, B, C, D) >>> ob_subspace = ss.observable_subspace() >>> ob_subspace [Matrix([ [0], [1]]), Matrix([ [1], [0]])]
- property output_matrix¶
Returns the output matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.output_matrix Matrix([[0, 1]])
- property shape¶
Returns the shape of the equivalent StateSpace system.
- property state_matrix¶
Returns the state matrix of the model.
Examples
>>> from sympy import Matrix >>> from sympy.physics.control import StateSpace >>> A = Matrix([[1, 2], [1, 0]]) >>> B = Matrix([1, 1]) >>> C = Matrix([[0, 1]]) >>> D = Matrix([0]) >>> ss = StateSpace(A, B, C, D) >>> ss.state_matrix Matrix([ [1, 2], [1, 0]])
- sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]¶
Returns falling coefficients of H(z) from numerator and denominator.
Explanation
Where H(z) is the corresponding discretized transfer function, discretized with the generalised bilinear transformation method. H(z) is obtained from the continuous transfer function H(s) by substituting \(s(z) = \frac{z-1}{T(\alpha z + (1-\alpha))}\) into H(s), where T is the sample period. Coefficients are falling, i.e. \(H(z) = \frac{az+b}{cz+d}\) is returned as [a, b], [c, d].
Examples
>>> from sympy.physics.control.lti import TransferFunction, gbt >>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s) >>> numZ, denZ = gbt(tf, T, 0.5) >>> numZ [T/(2*(L + R*T/2)), T/(2*(L + R*T/2))] >>> denZ [1, (-L + R*T/2)/(L + R*T/2)]
>>> numZ, denZ = gbt(tf, T, 0) >>> numZ [T/L] >>> denZ [1, (-L + R*T)/L]
>>> numZ, denZ = gbt(tf, T, 1) >>> numZ [T/(L + R*T), 0] >>> denZ [1, -L/(L + R*T)]
>>> numZ, denZ = gbt(tf, T, 0.3) >>> numZ [3*T/(10*(L + 3*R*T/10)), 7*T/(10*(L + 3*R*T/10))] >>> denZ [1, (-L + 7*R*T/10)/(L + 3*R*T/10)]
References
- sympy.physics.control.lti.bilinear(tf, sample_per)[source]¶
Returns falling coefficients of H(z) from numerator and denominator.
Explanation
Where H(z) is the corresponding discretized transfer function, discretized with the bilinear transform method. H(z) is obtained from the continuous transfer function H(s) by substituting \(s(z) = \frac{2}{T}\frac{z-1}{z+1}\) into H(s), where T is the sample period. Coefficients are falling, i.e. \(H(z) = \frac{az+b}{cz+d}\) is returned as [a, b], [c, d].
Examples
>>> from sympy.physics.control.lti import TransferFunction, bilinear >>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s) >>> numZ, denZ = bilinear(tf, T) >>> numZ [T/(2*(L + R*T/2)), T/(2*(L + R*T/2))] >>> denZ [1, (-L + R*T/2)/(L + R*T/2)]
- sympy.physics.control.lti.forward_diff(tf, sample_per)[source]¶
Returns falling coefficients of H(z) from numerator and denominator.
Explanation
Where H(z) is the corresponding discretized transfer function, discretized with the forward difference transform method. H(z) is obtained from the continuous transfer function H(s) by substituting \(s(z) = \frac{z-1}{T}\) into H(s), where T is the sample period. Coefficients are falling, i.e. \(H(z) = \frac{az+b}{cz+d}\) is returned as [a, b], [c, d].
Examples
>>> from sympy.physics.control.lti import TransferFunction, forward_diff >>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s) >>> numZ, denZ = forward_diff(tf, T) >>> numZ [T/L] >>> denZ [1, (-L + R*T)/L]
- sympy.physics.control.lti.backward_diff(tf, sample_per)[source]¶
Returns falling coefficients of H(z) from numerator and denominator.
Explanation
Where H(z) is the corresponding discretized transfer function, discretized with the backward difference transform method. H(z) is obtained from the continuous transfer function H(s) by substituting \(s(z) = \frac{z-1}{Tz}\) into H(s), where T is the sample period. Coefficients are falling, i.e. \(H(z) = \frac{az+b}{cz+d}\) is returned as [a, b], [c, d].
Examples
>>> from sympy.physics.control.lti import TransferFunction, backward_diff >>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s) >>> numZ, denZ = backward_diff(tf, T) >>> numZ [T/(L + R*T), 0] >>> denZ [1, -L/(L + R*T)]