Number of groups¶
- sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool [source]¶
Check whether \(n\) is a nilpotent number. A number \(n\) is said to be nilpotent if and only if every finite group of order \(n\) is nilpotent. For more information see [R48].
Examples
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number >>> from sympy import randprime >>> is_nilpotent_number(21) False >>> is_nilpotent_number(randprime(1, 30)**12) True
References
- sympy.combinatorics.group_numbers.is_abelian_number(n) bool [source]¶
Check whether \(n\) is an abelian number. A number \(n\) is said to be abelian if and only if every finite group of order \(n\) is abelian. For more information see [R50].
Examples
>>> from sympy.combinatorics.group_numbers import is_abelian_number >>> from sympy import randprime >>> is_abelian_number(4) True >>> is_abelian_number(randprime(1, 2000)**2) True >>> is_abelian_number(60) False
References
- sympy.combinatorics.group_numbers.is_cyclic_number(n) bool [source]¶
Check whether \(n\) is a cyclic number. A number \(n\) is said to be cyclic if and only if every finite group of order \(n\) is cyclic. For more information see [R52].
Examples
>>> from sympy.combinatorics.group_numbers import is_cyclic_number >>> from sympy import randprime >>> is_cyclic_number(15) True >>> is_cyclic_number(randprime(1, 2000)**2) False >>> is_cyclic_number(4) False
References
- sympy.combinatorics.group_numbers.groups_count(n)[source]¶
Number of groups of order \(n\). In [R54],
gnu(n)
is given, so we follow this notation here as well.- Parameters:
n : Integer
n
is a positive integer- Returns:
int :
gnu(n)
- Raises:
ValueError
Number of groups of order
n
is unknown or not implemented. For example, gnu(\(2^{11}\)) is not yet known. On the other hand, gnu(99) is known to be 2, but this has not yet been implemented in this function.
Examples
>>> from sympy.combinatorics.group_numbers import groups_count >>> groups_count(3) # There is only one cyclic group of order 3 1 >>> # There are two groups of order 10: the cyclic group and the dihedral group >>> groups_count(10) 2
See also
is_cyclic_number
\(n\) is cyclic iff gnu(n) = 1
References
[R54] (1,2)John H. Conway, Heiko Dietrich and E.A. O’Brien, Counting groups: gnus, moas and other exotica The Mathematical Intelligencer 30, 6-15 (2008) https://doi.org/10.1007/BF02985731