Wigner Symbols¶
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j, Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all evaluating to a rational number times the square root of a rational number [Rasch03].
Please see the description of the individual functions for further details and examples.
References¶
‘Symmetry Properties of Clebsch-Gordan Coefficients’, T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
‘Symmetry Properties of Racah Coefficients’, T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
A. R. Edmonds. Angular momentum in quantum mechanics. Investigations in physics, 4.; Investigations in physics, no. 4. Princeton, N.J., Princeton University Press, 1957.
J. Rasch and A. C. H. Yu, ‘Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients’, SIAM J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
‘FORTRAN program for the integral of three spherical harmonics’, A. Liberato de Brito, Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
Credits and Copyright¶
This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38
- sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]¶
Calculates the Clebsch-Gordan coefficient. \(\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle\).
The reference for this function is [Edmonds74].
- Parameters:
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
- Returns:
Rational number times the square root of a rational number.
Examples
>>> from sympy import S >>> from sympy.physics.wigner import clebsch_gordan >>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2) 1 >>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1) sqrt(3)/2 >>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0) -sqrt(2)/2
Notes
The Clebsch-Gordan coefficient will be evaluated via its relation to Wigner 3j symbols:
\[\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle =(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} \operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,-m_3)\]See also the documentation on Wigner 3j symbols which exhibit much higher symmetry relations than the Clebsch-Gordan coefficient.
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]¶
Returns dot product of rotational gradients of spherical harmonics.
Explanation
This function returns the right hand side of the following expression:
\[\vec{R}Y{_j^{p}} \cdot \vec{R}Y{_l^{m}} = (-1)^{m+p} \sum\limits_{k=|l-j|}^{l+j}Y{_k^{m+p}} * \alpha_{l,m,j,p,k} * \frac{1}{2} (k^2-j^2-l^2+k-j-l)\]Arguments
j, p, l, m …. indices in spherical harmonics (expressions or integers) theta, phi …. angle arguments in spherical harmonics
Example
>>> from sympy import symbols >>> from sympy.physics.wigner import dot_rot_grad_Ynm >>> theta, phi = symbols("theta phi") >>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
- sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]¶
Calculate the Gaunt coefficient.
- Parameters:
l_1, l_2, l_3, m_1, m_2, m_3 :
Integer.
prec - precision, default: ``None``.
Providing a precision can drastically speed up the calculation.
- Returns:
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Explanation
The Gaunt coefficient is defined as the integral over three spherical harmonics:
\[\begin{split}\begin{aligned} \operatorname{Gaunt}(l_1,l_2,l_3,m_1,m_2,m_3) &=\int Y_{l_1,m_1}(\Omega) Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) \,d\Omega \\ &=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \operatorname{Wigner3j}(l_1,l_2,l_3,0,0,0) \operatorname{Wigner3j}(l_1,l_2,l_3,m_1,m_2,m_3) \end{aligned}\end{split}\]Examples
>>> from sympy.physics.wigner import gaunt >>> gaunt(1,0,1,1,0,-1) -1/(2*sqrt(pi)) >>> gaunt(1000,1000,1200,9,3,-12).n(64) 0.006895004219221134484332976156744208248842039317638217822322799675
It is an error to use non-integer values for \(l\) and \(m\):
sage: gaunt(1.2,0,1.2,0,0,0) Traceback (most recent call last): ... ValueError: l values must be integer sage: gaunt(1,0,1,1.1,0,-1.1) Traceback (most recent call last): ... ValueError: m values must be integer
Notes
The Gaunt coefficient obeys the following symmetry rules:
invariant under any permutation of the columns
\[\begin{split}\begin{aligned} Y(l_1,l_2,l_3,m_1,m_2,m_3) &=Y(l_3,l_1,l_2,m_3,m_1,m_2) \\ &=Y(l_2,l_3,l_1,m_2,m_3,m_1) \\ &=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\ &=Y(l_1,l_3,l_2,m_1,m_3,m_2) \\ &=Y(l_2,l_1,l_3,m_2,m_1,m_3) \end{aligned}\end{split}\]invariant under space inflection, i.e.
\[Y(l_1,l_2,l_3,m_1,m_2,m_3) =Y(l_1,l_2,l_3,-m_1,-m_2,-m_3)\]symmetric with respect to the 72 Regge symmetries as inherited for the \(3j\) symbols [Regge58]
zero for \(l_1\), \(l_2\), \(l_3\) not fulfilling triangle relation
zero for violating any one of the conditions: \(l_1 \ge |m_1|\), \(l_2 \ge |m_2|\), \(l_3 \ge |m_3|\)
non-zero only for an even sum of the \(l_i\), i.e. \(L = l_1 + l_2 + l_3 = 2n\) for \(n\) in \(\mathbb{N}\)
Algorithms
This function uses the algorithm of [Liberatodebrito82] to calculate the value of the Gaunt coefficient exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version for Sage.
- sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]¶
Calculate the Racah symbol \(W(a,b,c,d;e,f)\).
- Parameters:
a, …, f :
Integer or half integer.
prec :
Precision, default:
None
. Providing a precision can drastically speed up the calculation.- Returns:
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import racah >>> racah(3,3,3,3,3,3) -1/14
Notes
The Racah symbol is related to the Wigner 6j symbol:
\[\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) =(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)\]Please see the 6j symbol for its much richer symmetries and for additional properties.
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.real_gaunt(
- l_1,
- l_2,
- l_3,
- mu_1,
- mu_2,
- mu_3,
- prec=None,
Calculate the real Gaunt coefficient.
- Parameters:
l_1, l_2, l_3, mu_1, mu_2, mu_3 :
Integer degree and order
prec - precision, default: ``None``.
Providing a precision can drastically speed up the calculation.
- Returns:
Rational number times the square root of a rational number.
Explanation
The real Gaunt coefficient is defined as the integral over three real spherical harmonics:
\[\begin{split}\begin{aligned} \operatorname{RealGaunt}(l_1,l_2,l_3,\mu_1,\mu_2,\mu_3) &=\int Z^{\mu_1}_{l_1}(\Omega) Z^{\mu_2}_{l_2}(\Omega) Z^{\mu_3}_{l_3}(\Omega) \,d\Omega \\ \end{aligned}\end{split}\]Alternatively, it can be defined in terms of the standard Gaunt coefficient by relating the real spherical harmonics to the standard spherical harmonics via a unitary transformation \(U\), i.e. \(Z^{\mu}_{l}(\Omega)=\sum_{m'}U^{\mu}_{m'}Y^{m'}_{l}(\Omega)\) [Homeier96]. The real Gaunt coefficient is then defined as
\[\begin{split}\begin{aligned} \operatorname{RealGaunt}(l_1,l_2,l_3,\mu_1,\mu_2,\mu_3) &=\int Z^{\mu_1}_{l_1}(\Omega) Z^{\mu_2}_{l_2}(\Omega) Z^{\mu_3}_{l_3}(\Omega) \,d\Omega \\ &=\sum_{m'_1 m'_2 m'_3} U^{\mu_1}_{m'_1}U^{\mu_2}_{m'_2}U^{\mu_3}_{m'_3} \operatorname{Gaunt}(l_1,l_2,l_3,m'_1,m'_2,m'_3) \end{aligned}\end{split}\]The unitary matrix \(U\) has components
\[\begin{aligned} U^\mu_{m} = \delta_{|\mu||m|}*(\delta_{m0}\delta_{\mu 0} + \frac{1}{\sqrt{2}}\big[\Theta(\mu)\big(\delta_{m\mu}+(-1)^{m}\delta_{m-\mu}\big) +i \Theta(-\mu)\big((-1)^{m}\delta_{m\mu}-\delta_{m-\mu}\big)\big]) \end{aligned}\]where \(\delta_{ij}\) is the Kronecker delta symbol and \(\Theta\) is a step function defined as
\[\begin{split}\begin{aligned} \Theta(x) = \begin{cases} 1 \,\text{for}\, x > 0 \\ 0 \,\text{for}\, x \leq 0 \end{cases} \end{aligned}\end{split}\]Examples
>>> from sympy.physics.wigner import real_gaunt >>> real_gaunt(1,1,2,-1,1,-2) sqrt(15)/(10*sqrt(pi)) >>> real_gaunt(10,10,20,-9,-9,0,prec=64) -0.00002480019791932209313156167176797577821140084216297395518482071448
- It is an error to use non-integer values for \(l\) and \(\mu\)::
real_gaunt(2.8,0.5,1.3,0,0,0) Traceback (most recent call last): … ValueError: l values must be integer
real_gaunt(2,2,4,0.7,1,-3.4) Traceback (most recent call last): … ValueError: mu values must be integer
Notes
The real Gaunt coefficient inherits from the standard Gaunt coefficient, the invariance under any permutation of the pairs \((l_i, \mu_i)\) and the requirement that the sum of the \(l_i\) be even to yield a non-zero value. It also obeys the following symmetry rules:
zero for \(l_1\), \(l_2\), \(l_3\) not fulfiling the condition \(l_1 \in \{l_{\text{max}}, l_{\text{max}}-2, \ldots, l_{\text{min}}\}\), where \(l_{\text{max}} = l_2+l_3\),
\[\begin{split}\begin{aligned} l_{\text{min}} = \begin{cases} \kappa(l_2, l_3, \mu_2, \mu_3) & \text{if}\, \kappa(l_2, l_3, \mu_2, \mu_3) + l_{\text{max}}\, \text{is even} \\ \kappa(l_2, l_3, \mu_2, \mu_3)+1 & \text{if}\, \kappa(l_2, l_3, \mu_2, \mu_3) + l_{\text{max}}\, \text{is odd}\end{cases} \end{aligned}\end{split}\]and \(\kappa(l_2, l_3, \mu_2, \mu_3) = \max{\big(|l_2-l_3|, \min{\big(|\mu_2+\mu_3|, |\mu_2-\mu_3|\big)}\big)}\)
zero for an odd number of negative \(\mu_i\)
Algorithms
This function uses the algorithms of [Homeier96] and [Rasch03] to calculate the value of the real Gaunt coefficient exactly. Note that the formula used in [Rasch03] contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03]. However, this function can in principle use any algorithm that computes the Gaunt coefficient, so it is suitable for finite precision arithmetic in so far as the algorithm which computes the Gaunt coefficient is.
- sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]¶
Calculate the Wigner 3j symbol \(\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)\).
- Parameters:
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
- Returns:
Rational number times the square root of a rational number.
Examples
>>> from sympy.physics.wigner import wigner_3j >>> wigner_3j(2, 6, 4, 0, 0, 0) sqrt(715)/143 >>> wigner_3j(2, 6, 4, 0, 0, 1) 0
It is an error to have arguments that are not integer or half integer values:
sage: wigner_3j(2.1, 6, 4, 0, 0, 0) Traceback (most recent call last): ... ValueError: j values must be integer or half integer sage: wigner_3j(2, 6, 4, 1, 0, -1.1) Traceback (most recent call last): ... ValueError: m values must be integer or half integer
Notes
The Wigner 3j symbol obeys the following symmetry rules:
invariant under any permutation of the columns (with the exception of a sign change where \(J:=j_1+j_2+j_3\)):
\[\begin{split}\begin{aligned} \operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3) &=\operatorname{Wigner3j}(j_3,j_1,j_2,m_3,m_1,m_2) \\ &=\operatorname{Wigner3j}(j_2,j_3,j_1,m_2,m_3,m_1) \\ &=(-1)^J \operatorname{Wigner3j}(j_3,j_2,j_1,m_3,m_2,m_1) \\ &=(-1)^J \operatorname{Wigner3j}(j_1,j_3,j_2,m_1,m_3,m_2) \\ &=(-1)^J \operatorname{Wigner3j}(j_2,j_1,j_3,m_2,m_1,m_3) \end{aligned}\end{split}\]invariant under space inflection, i.e.
\[\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3) =(-1)^J \operatorname{Wigner3j}(j_1,j_2,j_3,-m_1,-m_2,-m_3)\]symmetric with respect to the 72 additional symmetries based on the work by [Regge58]
zero for \(j_1\), \(j_2\), \(j_3\) not fulfilling triangle relation
zero for \(m_1 + m_2 + m_3 \neq 0\)
- zero for violating any one of the conditions
\(m_1 \in \{-|j_1|, \ldots, |j_1|\}\), \(m_2 \in \{-|j_2|, \ldots, |j_2|\}\), \(m_3 \in \{-|j_3|, \ldots, |j_3|\}\)
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]¶
Calculate the Wigner 6j symbol \(\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)\).
- Parameters:
j_1, …, j_6 :
Integer or half integer.
prec :
Precision, default:
None
. Providing a precision can drastically speed up the calculation.- Returns:
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import wigner_6j >>> wigner_6j(3,3,3,3,3,3) -1/14 >>> wigner_6j(5,5,5,5,5,5) 1/52
It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation
Notes
The Wigner 6j symbol is related to the Racah symbol but exhibits more symmetries as detailed below.
\[\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) =(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)\]The Wigner 6j symbol obeys the following symmetry rules:
Wigner 6j symbols are left invariant under any permutation of the columns:
\[\begin{split}\begin{aligned} \operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) &=\operatorname{Wigner6j}(j_3,j_1,j_2,j_6,j_4,j_5) \\ &=\operatorname{Wigner6j}(j_2,j_3,j_1,j_5,j_6,j_4) \\ &=\operatorname{Wigner6j}(j_3,j_2,j_1,j_6,j_5,j_4) \\ &=\operatorname{Wigner6j}(j_1,j_3,j_2,j_4,j_6,j_5) \\ &=\operatorname{Wigner6j}(j_2,j_1,j_3,j_5,j_4,j_6) \end{aligned}\end{split}\]They are invariant under the exchange of the upper and lower arguments in each of any two columns, i.e.
\[\begin{split}\begin{aligned} \operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) &=\operatorname{Wigner6j}(j_1,j_5,j_6,j_4,j_2,j_3)\\ &=\operatorname{Wigner6j}(j_4,j_2,j_6,j_1,j_5,j_3)\\ &=\operatorname{Wigner6j}(j_4,j_5,j_3,j_1,j_2,j_6) \end{aligned}\end{split}\]additional 6 symmetries [Regge59] giving rise to 144 symmetries in total
only non-zero if any triple of \(j\)’s fulfill a triangle relation
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
- sympy.physics.wigner.wigner_9j(
- j_1,
- j_2,
- j_3,
- j_4,
- j_5,
- j_6,
- j_7,
- j_8,
- j_9,
- prec=None,
Calculate the Wigner 9j symbol \(\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)\).
- Parameters:
j_1, …, j_9 :
Integer or half integer.
prec : precision, default
None
. Providing a precision can drastically speed up the calculation.- Returns:
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import wigner_9j >>> wigner_9j(1,1,1, 1,1,1, 1,1,0, prec=64) 0.05555555555555555555555555555555555555555555555555555555555555555
>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1, prec=64) 0.1666666666666666666666666666666666666666666666666666666666666667
It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
- sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]¶
Return the Wigner D matrix for angular momentum J.
- Returns:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of \(J_z\)).
\[\mathcal{D}_{\alpha \beta \gamma} = \exp\big( \frac{i\alpha}{\hbar} J_z\big) \exp\big( \frac{i\beta}{\hbar} J_y\big) \exp\big( \frac{i\gamma}{\hbar} J_z\big)\]The components are calculated using the general form [Edmonds74],
equation 4.1.12.
Explanation
- J :
An integer, half-integer, or SymPy symbol for the total angular momentum of the angular momentum space being rotated.
- alpha, beta, gamma - Real numbers representing the Euler.
Angles of rotation about the so-called vertical, line of nodes, and figure axes. See [Edmonds74].
Examples
The simplest possible example:
>>> from sympy.physics.wigner import wigner_d >>> from sympy import Integer, symbols, pprint >>> half = 1/Integer(2) >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True) ⎡ ⅈ⋅α ⅈ⋅γ ⅈ⋅α -ⅈ⋅γ ⎤ ⎢ ─── ─── ─── ───── ⎥ ⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞ ⎥ ⎢ ℯ ⋅ℯ ⋅cos⎜─⎟ ℯ ⋅ℯ ⋅sin⎜─⎟ ⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎥ ⎢ ⎥ ⎢ -ⅈ⋅α ⅈ⋅γ -ⅈ⋅α -ⅈ⋅γ ⎥ ⎢ ───── ─── ───── ───── ⎥ ⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞⎥ ⎢-ℯ ⋅ℯ ⋅sin⎜─⎟ ℯ ⋅ℯ ⋅cos⎜─⎟⎥ ⎣ ⎝2⎠ ⎝2⎠⎦
- sympy.physics.wigner.wigner_d_small(J, beta)[source]¶
Return the small Wigner d matrix for angular momentum J.
- Returns:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of \(J_z\)).
\[\mathcal{d}_{\beta} = \exp\big( \frac{i\beta}{\hbar} J_y\big)\]The components are calculated using the general form [Edmonds74],
equation 4.1.15.
Explanation
- JAn integer, half-integer, or SymPy symbol for the total angular
momentum of the angular momentum space being rotated.
- betaA real number representing the Euler angle of rotation about
the so-called line of nodes. See [Edmonds74].
Examples
>>> from sympy import Integer, symbols, pi, pprint >>> from sympy.physics.wigner import wigner_d_small >>> half = 1/Integer(2) >>> beta = symbols("beta", real=True) >>> pprint(wigner_d_small(half, beta), use_unicode=True) ⎡ ⎛β⎞ ⎛β⎞⎤ ⎢cos⎜─⎟ sin⎜─⎟⎥ ⎢ ⎝2⎠ ⎝2⎠⎥ ⎢ ⎥ ⎢ ⎛β⎞ ⎛β⎞⎥ ⎢-sin⎜─⎟ cos⎜─⎟⎥ ⎣ ⎝2⎠ ⎝2⎠⎦
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True) ⎡ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎤ ⎢ cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟ sin ⎜─⎟ ⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎥ ⎢ ⎥ ⎢ ⎛β⎞ ⎛β⎞ 2⎛β⎞ 2⎛β⎞ ⎛β⎞ ⎛β⎞⎥ ⎢-√2⋅sin⎜─⎟⋅cos⎜─⎟ - sin ⎜─⎟ + cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠⎥ ⎢ ⎥ ⎢ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎥ ⎢ sin ⎜─⎟ -√2⋅sin⎜─⎟⋅cos⎜─⎟ cos ⎜─⎟ ⎥ ⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦
From table 4 in [Edmonds74]
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True) ⎡ √2 √2⎤ ⎢ ── ──⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢-√2 √2⎥ ⎢──── ──⎥ ⎣ 2 2 ⎦
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √2 ⎤ ⎢1/2 ── 1/2⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2 √2 ⎥ ⎢──── 0 ── ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ -√2 ⎥ ⎢1/2 ──── 1/2⎥ ⎣ 2 ⎦
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √2 √6 √6 √2⎤ ⎢ ── ── ── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢-√6 -√2 √2 √6⎥ ⎢──── ──── ── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢ √6 -√2 -√2 √6⎥ ⎢ ── ──── ──── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢-√2 √6 -√6 √2⎥ ⎢──── ── ──── ──⎥ ⎣ 4 4 4 4 ⎦
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √6 ⎤ ⎢1/4 1/2 ── 1/2 1/4⎥ ⎢ 4 ⎥ ⎢ ⎥ ⎢-1/2 -1/2 0 1/2 1/2⎥ ⎢ ⎥ ⎢ √6 √6 ⎥ ⎢ ── 0 -1/2 0 ── ⎥ ⎢ 4 4 ⎥ ⎢ ⎥ ⎢-1/2 1/2 0 -1/2 1/2⎥ ⎢ ⎥ ⎢ √6 ⎥ ⎢1/4 -1/2 ── -1/2 1/4⎥ ⎣ 4 ⎦