Pauli¶
Pauli operators and states
- class sympy.physics.quantum.pauli.SigmaMinus(*args, **hints)[source]¶
Pauli sigma minus operator
- Parameters:
name : str
An optional string that labels the operator. Pauli operators with different names commute.
Examples
>>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaMinus >>> sm = SigmaMinus() >>> sm SigmaMinus() >>> Dagger(sm) SigmaPlus() >>> represent(sm) Matrix([ [0, 0], [1, 0]])
- class sympy.physics.quantum.pauli.SigmaPlus(*args, **hints)[source]¶
Pauli sigma plus operator
- Parameters:
name : str
An optional string that labels the operator. Pauli operators with different names commute.
Examples
>>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaPlus >>> sp = SigmaPlus() >>> sp SigmaPlus() >>> Dagger(sp) SigmaMinus() >>> represent(sp) Matrix([ [0, 1], [0, 0]])
- class sympy.physics.quantum.pauli.SigmaX(*args, **hints)[source]¶
Pauli sigma x operator
- Parameters:
name : str
An optional string that labels the operator. Pauli operators with different names commute.
Examples
>>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaX >>> sx = SigmaX() >>> sx SigmaX() >>> represent(sx) Matrix([ [0, 1], [1, 0]])
- class sympy.physics.quantum.pauli.SigmaY(*args, **hints)[source]¶
Pauli sigma y operator
- Parameters:
name : str
An optional string that labels the operator. Pauli operators with different names commute.
Examples
>>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaY >>> sy = SigmaY() >>> sy SigmaY() >>> represent(sy) Matrix([ [0, -I], [I, 0]])
- class sympy.physics.quantum.pauli.SigmaZ(*args, **hints)[source]¶
Pauli sigma z operator
- Parameters:
name : str
An optional string that labels the operator. Pauli operators with different names commute.
Examples
>>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaZ >>> sz = SigmaZ() >>> sz ** 3 SigmaZ() >>> represent(sz) Matrix([ [1, 0], [0, -1]])
- class sympy.physics.quantum.pauli.SigmaZBra(n)[source]¶
Bra for a two-level quantum system.
- Parameters:
n : Number
The state number (0 or 1).
- class sympy.physics.quantum.pauli.SigmaZKet(n)[source]¶
Ket for a two-level system quantum system.
- Parameters:
n : Number
The state number (0 or 1).
- sympy.physics.quantum.pauli.qsimplify_pauli(e)[source]¶
Simplify an expression that includes products of pauli operators.
- Parameters:
e : expression
An expression that contains products of Pauli operators that is to be simplified.
Examples
>>> from sympy.physics.quantum.pauli import SigmaX, SigmaY >>> from sympy.physics.quantum.pauli import qsimplify_pauli >>> sx, sy = SigmaX(), SigmaY() >>> sx * sy SigmaX()*SigmaY() >>> qsimplify_pauli(sx * sy) I*SigmaZ()