Introducing the domainmatrix of the poly module¶
This page introduces the idea behind domainmatrix which is used in SymPy’s
sympy.polys
module. This is a relatively advanced topic so for a better understanding
it is recommended to read about Domain
and DDM
along with
sympy.matrices
module.
What is domainmatrix?¶
It is way of associating Matrix with Domain
.
A domainmatrix represents a matrix with elements that are in a particular Domain. Each domainmatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the domainmatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains.
- In general, we represent a matrix without concerning about the
Domain
as: >>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> A = Matrix([ ... [1, 2], ... [3, 4]]) >>> A Matrix([ [1, 2], [3, 4]])
Module for the DomainMatrix class.
A DomainMatrix represents a matrix with elements that are in a particular Domain. Each DomainMatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the DomainMatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains.
- sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]¶
Convenient alias for DomainMatrix.from_list
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> DM([[1, 2], [3, 4]], ZZ) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See also
- class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]¶
Associate Matrix with
Domain
Explanation
DomainMatrix uses
Domain
for its internal representation which makes it faster than the SymPy Matrix class (currently) for many common operations, but this advantage makes it not entirely compatible with Matrix. DomainMatrix are analogous to numpy arrays with “dtype”. In the DomainMatrix, each element has a domain such as ZZ or QQ<a>.Examples
Creating a DomainMatrix from the existing Matrix class:
>>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> Matrix1 = Matrix([ ... [1, 2], ... [3, 4]]) >>> A = DomainMatrix.from_Matrix(Matrix1) >>> A DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
Directly forming a DomainMatrix:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
- add(B)[source]¶
Adds two DomainMatrix matrices of the same Domain
- Parameters:
A, B: DomainMatrix
matrices to add
- Returns:
DomainMatrix
DomainMatrix after Addition
- Raises:
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.add(B) DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
- adj_det()[source]¶
Adjugate and determinant of a square
DomainMatrix
.- Returns:
(adjugate, determinant) : (DomainMatrix, DomainScalar)
The adjugate matrix and determinant of this matrix.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], ZZ) >>> adjA, detA = A.adj_det() >>> adjA DomainMatrix([[4, -2], [-3, 1]], (2, 2), ZZ) >>> detA -2
- adj_poly_det(cp=None)[source]¶
Return the polynomial \(p\) such that \(p(A) = adj(A)\) and also the determinant of \(A\).
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ) >>> p, detA = A.adj_poly_det() >>> p [-1, 5] >>> p_A = A.eval_poly(p) >>> p_A DomainMatrix([[4, -2], [-3, 1]], (2, 2), QQ) >>> p[0]*A**1 + p[1]*A**0 == p_A True >>> p_A == A.adjugate() True >>> A * A.adjugate() == detA * A.eye(A.shape, A.domain).to_dense() True
- adjugate()[source]¶
Adjugate of a square
DomainMatrix
.The adjugate matrix is the transpose of the cofactor matrix and is related to the inverse by:
adj(A) = det(A) * A.inv()
Unlike the inverse matrix the adjugate matrix can be computed and expressed without division or fractions in the ground domain.
- Returns:
DomainMatrix
The adjugate matrix of this matrix with the same domain.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ) >>> A.adjugate() DomainMatrix([[4, -2], [-3, 1]], (2, 2), ZZ)
See also
- cancel_denom(denom)[source]¶
Cancel factors between a matrix and a denominator.
Returns a matrix and denominator on lowest terms.
Requires
gcd
in the ground domain.Methods like
solve_den()
,inv_den()
andrref_den()
return a matrix and denominator but not necessarily on lowest terms. Reduction to lowest terms without fractions can be performed withcancel_denom()
.Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[2, 2, 0], ... [0, 2, 2], ... [0, 0, 2]], ZZ) >>> Minv, den = M.inv_den() >>> Minv.to_Matrix() Matrix([ [1, -1, 1], [0, 1, -1], [0, 0, 1]]) >>> den 2 >>> Minv_reduced, den_reduced = Minv.cancel_denom(den) >>> Minv_reduced.to_Matrix() Matrix([ [1, -1, 1], [0, 1, -1], [0, 0, 1]]) >>> den_reduced 2 >>> Minv_reduced.to_field() / den_reduced == Minv.to_field() / den True
The denominator is made canonical with respect to units (e.g. a negative denominator is made positive):
>>> M = DM([[2, 2, 0]], ZZ) >>> den = ZZ(-4) >>> M.cancel_denom(den) (DomainMatrix([[-1, -1, 0]], (1, 3), ZZ), 2)
Any factor common to _all_ elements will be cancelled but there can still be factors in common between _some_ elements of the matrix and the denominator. To cancel factors between each element and the denominator, use
cancel_denom_elementwise()
or otherwise convert to a field and use division:>>> M = DM([[4, 6]], ZZ) >>> den = ZZ(12) >>> M.cancel_denom(den) (DomainMatrix([[2, 3]], (1, 2), ZZ), 6) >>> numers, denoms = M.cancel_denom_elementwise(den) >>> numers DomainMatrix([[1, 1]], (1, 2), ZZ) >>> denoms DomainMatrix([[3, 2]], (1, 2), ZZ) >>> M.to_field() / den DomainMatrix([[1/3, 1/2]], (1, 2), QQ)
See also
- cancel_denom_elementwise(denom)[source]¶
Cancel factors between the elements of a matrix and a denominator.
Returns a matrix of numerators and matrix of denominators.
Requires
gcd
in the ground domain.Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[2, 3], [4, 12]], ZZ) >>> denom = ZZ(6) >>> numers, denoms = M.cancel_denom_elementwise(denom) >>> numers.to_Matrix() Matrix([ [1, 1], [2, 2]]) >>> denoms.to_Matrix() Matrix([ [3, 2], [3, 1]]) >>> M_frac = (M.to_field() / denom).to_Matrix() >>> M_frac Matrix([ [1/3, 1/2], [2/3, 2]]) >>> denoms_inverted = denoms.to_Matrix().applyfunc(lambda e: 1/e) >>> numers.to_Matrix().multiply_elementwise(denoms_inverted) == M_frac True
Use
cancel_denom()
to cancel factors between the matrix and the denominator while preserving the form of a matrix with a scalar denominator.See also
- charpoly()[source]¶
Characteristic polynomial of a square matrix.
Computes the characteristic polynomial in a fully expanded form using division free arithmetic. If a factorization of the characteristic polynomial is needed then it is more efficient to call
charpoly_factor_list()
than callingcharpoly()
and then factorizing the result.- Returns:
list: list of DomainElement
coefficients of the characteristic polynomial
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.charpoly() [1, -5, -2]
See also
charpoly_factor_list
Compute the factorisation of the characteristic polynomial.
charpoly_factor_blocks
A partial factorisation of the characteristic polynomial that can be computed more efficiently than either the full factorisation or the fully expanded polynomial.
- charpoly_base()[source]¶
Base case for
charpoly_factor_blocks()
after block decomposition.This method is used internally by
charpoly_factor_blocks()
as the base case for computing the characteristic polynomial of a block. It is more efficient to callcharpoly_factor_blocks()
,charpoly()
orcharpoly_factor_list()
rather than call this method directly.This will use either the dense or the sparse implementation depending on the sparsity of the matrix and will clear denominators if possible before calling
charpoly_berk()
to compute the characteristic polynomial using the Berkowitz algorithm.
- charpoly_berk()[source]¶
Compute the characteristic polynomial using the Berkowitz algorithm.
This method directly calls the underlying implementation of the Berkowitz algorithm (
sympy.polys.matrices.dense.ddm_berk()
orsympy.polys.matrices.sdm.sdm_berk()
).This is used by
charpoly()
and other methods as the base case for for computing the characteristic polynomial. However those methods will apply other optimizations such as block decomposition, clearing denominators and converting between dense and sparse representations before calling this method. It is more efficient to call those methods instead of this one but this method is provided for direct access to the Berkowitz algorithm.Examples
>>> from sympy.polys.matrices import DM >>> from sympy import QQ >>> M = DM([[6, -1, 0, 0], ... [9, 12, 0, 0], ... [0, 0, 1, 2], ... [0, 0, 5, 6]], QQ) >>> M.charpoly_berk() [1, -25, 203, -495, -324]
- charpoly_factor_blocks()[source]¶
Partial factorisation of the characteristic polynomial.
This factorisation arises from a block structure of the matrix (if any) and so the factors are not guaranteed to be irreducible. The
charpoly_factor_blocks()
method is the most efficient way to get a representation of the characteristic polynomial but the result is neither fully expanded nor fully factored.- Returns:
list: list of pairs (factor, multiplicity)
A partial factorization of the characteristic polynomial.
Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[6, -1, 0, 0], ... [9, 12, 0, 0], ... [0, 0, 1, 2], ... [0, 0, 5, 6]], ZZ)
This computes a partial factorization using only the block structure of the matrix to reveal factors:
>>> M.charpoly_factor_blocks() [([1, -18, 81], 1), ([1, -7, -4], 1)]
These factors correspond to the two diagonal blocks in the matrix:
>>> DM([[6, -1], [9, 12]], ZZ).charpoly() [1, -18, 81] >>> DM([[1, 2], [5, 6]], ZZ).charpoly() [1, -7, -4]
Use
charpoly_factor_list()
to get a complete factorization into irreducibles:>>> M.charpoly_factor_list() [([1, -9], 2), ([1, -7, -4], 1)]
Use
charpoly()
to get the expanded characteristic polynomial:>>> M.charpoly() [1, -25, 203, -495, -324]
See also
charpoly
Compute the fully expanded characteristic polynomial.
charpoly_factor_list
Compute a full factorization of the characteristic polynomial.
- charpoly_factor_list()[source]¶
Full factorization of the characteristic polynomial.
- Returns:
list: list of pairs (factor, multiplicity)
A full factorization of the characteristic polynomial.
Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[6, -1, 0, 0], ... [9, 12, 0, 0], ... [0, 0, 1, 2], ... [0, 0, 5, 6]], ZZ)
Compute the factorization of the characteristic polynomial:
>>> M.charpoly_factor_list() [([1, -9], 2), ([1, -7, -4], 1)]
Use
charpoly()
to get the unfactorized characteristic polynomial:>>> M.charpoly() [1, -25, 203, -495, -324]
The same calculations with
Matrix
:>>> M.to_Matrix().charpoly().as_expr() lambda**4 - 25*lambda**3 + 203*lambda**2 - 495*lambda - 324 >>> M.to_Matrix().charpoly().as_expr().factor() (lambda - 9)**2*(lambda**2 - 7*lambda - 4)
See also
charpoly
Expanded form of the characteristic polynomial.
charpoly_factor_blocks
A partial factorisation of the characteristic polynomial that can be computed more efficiently.
- choose_domain(**opts)[source]¶
Convert to a domain found by
construct_domain()
.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> M = DM([[1, 2], [3, 4]], ZZ) >>> M DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) >>> M.choose_domain(field=True) DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
>>> from sympy.abc import x >>> M = DM([[1, x], [x**2, x**3]], ZZ[x]) >>> M.choose_domain(field=True).domain ZZ(x)
Keyword arguments are passed to
construct_domain()
.See also
- clear_denoms(convert=False)[source]¶
Clear denominators, but keep the domain unchanged.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([[(1,2), (1,3)], [(1,4), (1,5)]], QQ) >>> den, Anum = A.clear_denoms() >>> den.to_sympy() 60 >>> Anum.to_Matrix() Matrix([ [30, 20], [15, 12]]) >>> den * A == Anum True
The numerator matrix will be in the same domain as the original matrix unless
convert
is set toTrue
:>>> A.clear_denoms()[1].domain QQ >>> A.clear_denoms(convert=True)[1].domain ZZ
The denominator is always in the associated ring:
>>> A.clear_denoms()[0].domain ZZ >>> A.domain.get_ring() ZZ
- clear_denoms_rowwise(convert=False)[source]¶
Clear denominators from each row of the matrix.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([[(1,2), (1,3), (1,4)], [(1,5), (1,6), (1,7)]], QQ) >>> den, Anum = A.clear_denoms_rowwise() >>> den.to_Matrix() Matrix([ [12, 0], [ 0, 210]]) >>> Anum.to_Matrix() Matrix([ [ 6, 4, 3], [42, 35, 30]])
The denominator matrix is a diagonal matrix with the denominators of each row on the diagonal. The invariants are:
>>> den * A == Anum True >>> A == den.to_field().inv() * Anum True
The numerator matrix will be in the same domain as the original matrix unless
convert
is set toTrue
:>>> A.clear_denoms_rowwise()[1].domain QQ >>> A.clear_denoms_rowwise(convert=True)[1].domain ZZ
The domain of the denominator matrix is the associated ring:
>>> A.clear_denoms_rowwise()[0].domain ZZ
- columnspace()[source]¶
Returns the columnspace for the DomainMatrix
- Returns:
DomainMatrix
The columns of this matrix form a basis for the columnspace.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.columnspace() DomainMatrix([[1], [2]], (2, 1), QQ)
- content()[source]¶
Return the gcd of the elements of the matrix.
Requires
gcd
in the ground domain.Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[2, 4], [4, 12]], ZZ) >>> M.content() 2
See also
- convert_to(K)[source]¶
Change the domain of DomainMatrix to desired domain or field
- Parameters:
K : Represents the desired domain or field.
Alternatively,
None
may be passed, in which case this method just returns a copy of this DomainMatrix.- Returns:
DomainMatrix
DomainMatrix with the desired domain or field
Examples
>>> from sympy import ZZ, ZZ_I >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.convert_to(ZZ_I) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
- det()[source]¶
Returns the determinant of a square
DomainMatrix
.- Returns:
determinant: DomainElement
Determinant of the matrix.
- Raises:
ValueError
If the domain of DomainMatrix is not a Field
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.det() -2
- classmethod diag(diagonal, domain, shape=None)[source]¶
Return diagonal matrix with entries from
diagonal
.Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import ZZ >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ) DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
- diagonal()[source]¶
Get the diagonal entries of the matrix as a list.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> M = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ) >>> M.diagonal() [1, 4]
See also
- eval_poly(p)[source]¶
Evaluate polynomial function of a matrix \(p(A)\).
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ) >>> p = [QQ(1), QQ(2), QQ(3)] >>> p_A = A.eval_poly(p) >>> p_A DomainMatrix([[12, 14], [21, 33]], (2, 2), QQ) >>> p_A == p[0]*A**2 + p[1]*A + p[2]*A**0 True
See also
- eval_poly_mul(p, B)[source]¶
Evaluate polynomial matrix product \(p(A) \times B\).
Evaluate the polynomial matrix product \(p(A) \times B\) using Horner’s method without creating the matrix \(p(A)\) explicitly. If \(B\) is a column matrix then this method will only use matrix-vector multiplies and no matrix-matrix multiplies are needed.
If \(B\) is square or wide or if \(A\) can be represented in a simpler domain than \(B\) then it might be faster to evaluate \(p(A)\) explicitly (see
eval_poly()
) and then multiply with \(B\).Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ) >>> b = DM([[QQ(5)], [QQ(6)]], QQ) >>> p = [QQ(1), QQ(2), QQ(3)] >>> p_A_b = A.eval_poly_mul(p, b) >>> p_A_b DomainMatrix([[144], [303]], (2, 1), QQ) >>> p_A_b == p[0]*A**2*b + p[1]*A*b + p[2]*b True >>> A.eval_poly_mul(p, b) == A.eval_poly(p)*b True
See also
- classmethod eye(shape, domain)[source]¶
Return identity matrix of size n or shape (m, n).
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.eye(3, QQ) DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
- classmethod from_Matrix(
- M,
- fmt='sparse',
- **kwargs,
Convert Matrix to DomainMatrix
- Parameters:
M: Matrix
- Returns:
Returns DomainMatrix with identical elements as M
Examples
>>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> M = Matrix([ ... [1.0, 3.4], ... [2.4, 1]]) >>> A = DomainMatrix.from_Matrix(M) >>> A DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
We can keep internal representation as ddm using fmt=’dense’ >>> from sympy import Matrix, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt=’dense’) >>> A.rep [[1/2, 3/4], [0, 0]]
See also
- classmethod from_dict_sympy(
- nrows,
- ncols,
- elemsdict,
- **kwargs,
- Parameters:
nrows: number of rows
ncols: number of cols
elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
- Returns:
DomainMatrix containing elements of elemsdict
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x,y,z >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}} >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict) >>> A DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
See also
- classmethod from_dod(dod, shape, domain)[source]¶
Create sparse
DomainMatrix
from dict of dict (dod) format.See
to_dod()
for explanation.See also
- from_dod_like(dod, domain=None)[source]¶
Create
DomainMatrix
likeself
from dict of dict (dod) format.See
to_dod()
for explanation.
- classmethod from_dok(dok, shape, domain)[source]¶
Create
DomainMatrix
from dictionary of keys (dok) format.See
to_dok()
for explanation.See also
- from_flat_nz(elements, data, domain)[source]¶
Reconstruct
DomainMatrix
after callingto_flat_nz()
.See
to_flat_nz()
for explanation.See also
- classmethod from_list(rows, domain)[source]¶
Convert a list of lists into a DomainMatrix
- Parameters:
rows: list of lists
Each element of the inner lists should be either the single arg, or tuple of args, that would be passed to the domain constructor in order to form an element of the domain. See examples.
- Returns:
DomainMatrix containing elements defined in rows
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import FF, QQ, ZZ >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ) >>> A DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ) >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7)) >>> B DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7)) >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) >>> C DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
See also
- classmethod from_list_flat(
- elements,
- shape,
- domain,
Create
DomainMatrix
from flat list.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> element_list = [ZZ(1), ZZ(2), ZZ(3), ZZ(4)] >>> A = DomainMatrix.from_list_flat(element_list, (2, 2), ZZ) >>> A DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) >>> A == A.from_list_flat(A.to_list_flat(), A.shape, A.domain) True
See also
- classmethod from_list_sympy(
- nrows,
- ncols,
- rows,
- **kwargs,
Convert a list of lists of Expr into a DomainMatrix using construct_domain
- Parameters:
nrows: number of rows
ncols: number of columns
rows: list of lists
- Returns:
DomainMatrix containing elements of rows
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x, y, z >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]]) >>> A DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
- classmethod from_rep(rep)[source]¶
Create a new DomainMatrix efficiently from DDM/SDM.
- Parameters:
rep: SDM or DDM
The internal sparse or dense representation of the matrix.
- Returns:
DomainMatrix
A
DomainMatrix
wrapping rep.
Examples
Create a
DomainMatrix
with an dense internal representation asDDM
:>>> from sympy.polys.domains import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.ddm import DDM >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
Create a
DomainMatrix
with a sparse internal representation asSDM
:>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import ZZ >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
Notes
This takes ownership of rep as its internal representation. If rep is being mutated elsewhere then a copy should be provided to
from_rep
. Only minimal verification or checking is done on rep as this is supposed to be an efficient internal routine.
- hstack(*B)[source]¶
Horizontally stack the given matrices.
- Parameters:
B: DomainMatrix
Matrices to stack horizontally.
- Returns:
DomainMatrix
DomainMatrix by stacking horizontally.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
See also
- inv()[source]¶
Finds the inverse of the DomainMatrix if exists
- Returns:
DomainMatrix
DomainMatrix after inverse
- Raises:
ValueError
If the domain of DomainMatrix not a Field
DMNonSquareMatrixError
If the DomainMatrix is not a not Square DomainMatrix
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> A.inv() DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
See also
- inv_den(method=None)[source]¶
Return the inverse as a
DomainMatrix
with denominator.- Parameters:
method : str, optional
The method to use to compute the inverse. Can be one of
None
,'rref'
or'charpoly'
. IfNone
then the method is chosen automatically (seesolve_den()
for details).- Returns:
(inv, den) : (
DomainMatrix
,DomainElement
)The inverse matrix and its denominator.
This is more or less equivalent to
adj_det()
except thatinv
and
den
are not guaranteed to be the adjugate and inverse. Theratio
inv/den
is equivalent toadj/det
but some factorsmight be cancelled between
inv
andden
. In simple cases thismight just be a minus sign so that
(inv, den) == (-adj, -det)
butfactors more complicated than
-1
can also be cancelled.Cancellation is not guaranteed to be complete so
inv
andden
may not be on lowest terms. The denominator
den
will be zero if andonly if the determinant is zero.
If the actual adjugate and determinant are needed, use
adj_det()
instead. If the intention is to compute the inverse matrix or solve a
system of equations then
inv_den()
is more efficient.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(2), ZZ(-1), ZZ(0)], ... [ZZ(-1), ZZ(2), ZZ(-1)], ... [ZZ(0), ZZ(0), ZZ(2)]], (3, 3), ZZ) >>> Ainv, den = A.inv_den() >>> den 6 >>> Ainv DomainMatrix([[4, 2, 1], [2, 4, 2], [0, 0, 3]], (3, 3), ZZ) >>> A * Ainv == den * A.eye(A.shape, A.domain).to_dense() True
- property is_diagonal¶
True if the matrix is diagonal.
Can return true for non-square matrices. A matrix is diagonal if
M[i,j] == 0
wheneveri != j
.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> M = DM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], ZZ) >>> M.is_diagonal True
- property is_lower¶
Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.
- property is_square¶
True if the matrix is square.
- property is_upper¶
Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.
- iter_items()[source]¶
Iterate over indices and values of nonzero elements of the matrix.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> list(A.iter_items()) [((0, 0), 1), ((1, 0), 3), ((1, 1), 4)]
- iter_values()[source]¶
Iterate over nonzero elements of the matrix.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> list(A.iter_values()) [1, 3, 4]
- lll(delta=MPQ(3, 4))[source]¶
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. See [R780] and [R781].
- Parameters:
delta : QQ, optional
The Lovász parameter. Must be in the interval (0.25, 1), with larger values producing a more reduced basis. The default is 0.75 for historical reasons.
- Returns:
The reduced basis as a DomainMatrix over ZZ.
Throws
DMValueError: if delta is not in the range (0.25, 1) DMShapeError: if the matrix is not of shape (m, n) with m <= n DMDomainError: if the matrix domain is not ZZ DMRankError: if the matrix contains linearly dependent rows
Examples
>>> from sympy.polys.domains import ZZ, QQ >>> from sympy.polys.matrices import DM >>> x = DM([[1, 0, 0, 0, -20160], ... [0, 1, 0, 0, 33768], ... [0, 0, 1, 0, 39578], ... [0, 0, 0, 1, 47757]], ZZ) >>> y = DM([[10, -3, -2, 8, -4], ... [3, -9, 8, 1, -11], ... [-3, 13, -9, -3, -9], ... [-12, -7, -11, 9, -1]], ZZ) >>> assert x.lll(delta=QQ(5, 6)) == y
Notes
The implementation is derived from the Maple code given in Figures 4.3 and 4.4 of [R782] (pp.68-69). It uses the efficient method of only calculating state updates as they are required.
See also
References
- lll_transform(delta=MPQ(3, 4))[source]¶
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm and returns the reduced basis and transformation matrix.
Explanation
Parameters, algorithm and basis are the same as for
lll()
except that the return value is a tuple \((B, T)\) with \(B\) the reduced basis and \(T\) a transformation matrix. The original basis \(A\) is transformed to \(B\) with \(T*A == B\). If only \(B\) is needed thenlll()
should be used as it is a little faster.Examples
>>> from sympy.polys.domains import ZZ, QQ >>> from sympy.polys.matrices import DM >>> X = DM([[1, 0, 0, 0, -20160], ... [0, 1, 0, 0, 33768], ... [0, 0, 1, 0, 39578], ... [0, 0, 0, 1, 47757]], ZZ) >>> B, T = X.lll_transform(delta=QQ(5, 6)) >>> T * X == B True
See also
- lu()[source]¶
Returns Lower and Upper decomposition of the DomainMatrix
- Returns:
(L, U, exchange)
L, U are Lower and Upper decomposition of the DomainMatrix, exchange is the list of indices of rows exchanged in the decomposition.
- Raises:
ValueError
If the domain of DomainMatrix not a Field
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> L, U, exchange = A.lu() >>> L DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ) >>> U DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ) >>> exchange []
See also
- lu_solve(rhs)[source]¶
Solver for DomainMatrix x in the A*x = B
- Parameters:
rhs : DomainMatrix B
- Returns:
DomainMatrix
x in A*x = B
- Raises:
DMShapeError
If the DomainMatrix A and rhs have different number of rows
ValueError
If the domain of DomainMatrix A not a Field
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(2)], ... [QQ(3), QQ(4)]], (2, 2), QQ) >>> B = DomainMatrix([ ... [QQ(1), QQ(1)], ... [QQ(0), QQ(1)]], (2, 2), QQ)
>>> A.lu_solve(B) DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
See also
- matmul(B)[source]¶
Performs matrix multiplication of two DomainMatrix matrices
- Parameters:
A, B: DomainMatrix
to multiply
- Returns:
DomainMatrix
DomainMatrix after multiplication
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.matmul(B) DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
- mul(b)[source]¶
Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.
- Parameters:
A, B: DomainMatrix
matrices to multiply term-wise
- Returns:
DomainMatrix
DomainMatrix after term by term multiplication
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> b = ZZ(2)
>>> A.mul(b) DomainMatrix([[2, 4], [6, 8]], (2, 2), ZZ)
See also
- neg()[source]¶
Returns the negative of DomainMatrix
- Parameters:
A : Represents a DomainMatrix
- Returns:
DomainMatrix
DomainMatrix after Negation
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.neg() DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
- nnz()[source]¶
Number of nonzero elements in the matrix.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[1, 0], [0, 4]], ZZ) >>> A.nnz() 2
- nullspace(divide_last=False)[source]¶
Returns the nullspace for the DomainMatrix
- Parameters:
divide_last : bool, optional
If False (the default), the vectors are not normalized and the RREF is computed using
rref_den()
and the denominator is discarded. If True, then each row is divided by its final element; the domain must be a field in this case.- Returns:
DomainMatrix
The rows of this matrix form a basis for the nullspace.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DM >>> A = DM([ ... [QQ(2), QQ(-2)], ... [QQ(4), QQ(-4)]], QQ) >>> A.nullspace() DomainMatrix([[1, 1]], (1, 2), QQ)
The returned matrix is a basis for the nullspace:
>>> A_null = A.nullspace().transpose() >>> A * A_null DomainMatrix([[0], [0]], (2, 1), QQ) >>> rows, cols = A.shape >>> nullity = rows - A.rank() >>> A_null.shape == (cols, nullity) True
Nullspace can also be computed for non-field rings. If the ring is not a field then division is not used. Setting
divide_last
to True will raise an error in this case:>>> from sympy import ZZ >>> B = DM([[6, -3], ... [4, -2]], ZZ) >>> B.nullspace() DomainMatrix([[3, 6]], (1, 2), ZZ) >>> B.nullspace(divide_last=True) Traceback (most recent call last): ... DMNotAField: Cannot normalize vectors over a non-field
Over a ring with
gcd
defined the nullspace can potentially be reduced withprimitive()
:>>> B.nullspace().primitive() (3, DomainMatrix([[1, 2]], (1, 2), ZZ))
A matrix over a ring can often be normalized by converting it to a field but it is often a bad idea to do so:
>>> from sympy.abc import a, b, c >>> from sympy import Matrix >>> M = Matrix([[ a*b, b + c, c], ... [ a - b, b*c, c**2], ... [a*b + a - b, b*c + b + c, c**2 + c]]) >>> M.to_DM().domain ZZ[a,b,c] >>> M.to_DM().nullspace().to_Matrix().transpose() Matrix([ [ c**3], [ -a*b*c**2 + a*c - b*c], [a*b**2*c - a*b - a*c + b**2 + b*c]])
The unnormalized form here is nicer than the normalized form that spreads a large denominator throughout the matrix:
>>> M.to_DM().to_field().nullspace(divide_last=True).to_Matrix().transpose() Matrix([ [ c**3/(a*b**2*c - a*b - a*c + b**2 + b*c)], [(-a*b*c**2 + a*c - b*c)/(a*b**2*c - a*b - a*c + b**2 + b*c)], [ 1]])
See also
- nullspace_from_rref(pivots=None)[source]¶
Compute nullspace from rref and pivots.
The domain of the matrix can be any domain.
The matrix must be in reduced row echelon form already. Otherwise the result will be incorrect. Use
rref()
orrref_den()
first to get the reduced row echelon form or usenullspace()
instead.
- classmethod ones(shape, domain)[source]¶
Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.ones((2,3), QQ) DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
- pow(n)[source]¶
Computes A**n
- Parameters:
A : DomainMatrix
n : exponent for A
- Returns:
DomainMatrix
DomainMatrix on computing A**n
- Raises:
NotImplementedError
if n is negative.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.pow(2) DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
See also
- primitive()[source]¶
Factor out gcd of the elements of a matrix.
Requires
gcd
in the ground domain.Examples
>>> from sympy.polys.matrices import DM >>> from sympy import ZZ >>> M = DM([[2, 4], [4, 12]], ZZ) >>> content, M_primitive = M.primitive() >>> content 2 >>> M_primitive DomainMatrix([[1, 2], [2, 6]], (2, 2), ZZ) >>> content * M_primitive == M True >>> M_primitive.content() == ZZ(1) True
See also
- qr()[source]¶
QR decomposition of the DomainMatrix.
- Returns:
(Q, R)
Q is the orthogonal matrix, and R is the upper triangular matrix resulting from the QR decomposition of the DomainMatrix.
- Raises:
DMDomainError
If the domain of the DomainMatrix is not a field (e.g., QQ).
Explanation
The QR decomposition expresses a matrix as the product of an orthogonal matrix (Q) and an upper triangular matrix (R). In this implementation, Q is not orthonormal: its columns are orthogonal but not normalized to unit vectors. This avoids unnecessary divisions and is particularly suited for exact arithmetic domains.
Note
This implementation is valid only for matrices over real domains. For matrices over complex domains, a proper QR decomposition would require handling conjugation to ensure orthogonality.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[1, 2], [3, 4], [5, 6]], (3, 2), QQ) >>> Q, R = A.qr() >>> Q DomainMatrix([[1, 26/35], [3, 8/35], [5, -2/7]], (3, 2), QQ) >>> R DomainMatrix([[1, 44/35], [0, 1]], (2, 2), QQ) >>> Q * R == A True >>> (Q.transpose() * Q).is_diagonal True >>> R.is_upper True
See also
- rowspace()[source]¶
Returns the rowspace for the DomainMatrix
- Returns:
DomainMatrix
The rows of this matrix form a basis for the rowspace.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.rowspace() DomainMatrix([[1, -1]], (1, 2), QQ)
- rref(*, method='auto')[source]¶
Returns reduced-row echelon form (RREF) and list of pivots.
If the domain is not a field then it will be converted to a field. See
rref_den()
for the fraction-free version of this routine that returns RREF with denominator instead.The domain must either be a field or have an associated fraction field (see
to_field()
).- Parameters:
method : str, optional (default: ‘auto’)
The method to use to compute the RREF. The default is
'auto'
, which will attempt to choose the fastest method. The other options are:A.rref(method='GJ')
uses Gauss-Jordan elimination with division. If the domain is not a field then it will be converted to a field withto_field()
first and RREF will be computed by inverting the pivot elements in each row. This is most efficient for very sparse matrices or for matrices whose elements have complex denominators.A.rref(method='FF')
uses fraction-free Gauss-Jordan elimination. Elimination is performed using exact division (exquo
) to control the growth of the coefficients. In this case the current domain is always used for elimination but if the domain is not a field then it will be converted to a field at the end and divided by the denominator. This is most efficient for dense matrices or for matrices with simple denominators.A.rref(method='CD')
clears the denominators before using fraction-free Gauss-Jordan elimination in the assoicated ring. This is most efficient for dense matrices with very simple denominators.A.rref(method='GJ_dense')
,A.rref(method='FF_dense')
, andA.rref(method='CD_dense')
are the same as the above methods except that the dense implementations of the algorithms are used. By defaultA.rref(method='auto')
will usually choose the sparse implementations for RREF.
Regardless of which algorithm is used the returned matrix will always have the same format (sparse or dense) as the input and its domain will always be the field of fractions of the input domain.
- Returns:
(DomainMatrix, list)
reduced-row echelon form and list of pivots for the DomainMatrix
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> rref_matrix, rref_pivots = A.rref() >>> rref_matrix DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) >>> rref_pivots (0, 1, 2)
See also
rref_den
RREF with denominator
sympy.polys.matrices.sdm.sdm_irref
Sparse implementation of
method='GJ'
.sympy.polys.matrices.sdm.sdm_rref_den
Sparse implementation of
method='FF'
andmethod='CD'
.sympy.polys.matrices.dense.ddm_irref
Dense implementation of
method='GJ'
.sympy.polys.matrices.dense.ddm_irref_den
Dense implementation of
method='FF'
andmethod='CD'
.clear_denoms
Clear denominators from a matrix, used by
method='CD'
and bymethod='GJ'
when the original domain is not a field.
- rref_den(
- *,
- method='auto',
- keep_domain=True,
Returns reduced-row echelon form with denominator and list of pivots.
Requires exact division in the ground domain (
exquo
).- Parameters:
method : str, optional (default: ‘auto’)
The method to use to compute the RREF. The default is
'auto'
, which will attempt to choose the fastest method. The other options are:A.rref(method='FF')
uses fraction-free Gauss-Jordan elimination. Elimination is performed using exact division (exquo
) to control the growth of the coefficients. In this case the current domain is always used for elimination and the result is always returned as a matrix over the current domain. This is most efficient for dense matrices or for matrices with simple denominators.A.rref(method='CD')
clears denominators before using fraction-free Gauss-Jordan elimination in the assoicated ring. The result will be converted back to the original domain unlesskeep_domain=False
is passed in which case the result will be over the ring used for elimination. This is most efficient for dense matrices with very simple denominators.A.rref(method='GJ')
uses Gauss-Jordan elimination with division. If the domain is not a field then it will be converted to a field withto_field()
first and RREF will be computed by inverting the pivot elements in each row. The result is converted back to the original domain by clearing denominators unlesskeep_domain=False
is passed in which case the result will be over the field used for elimination. This is most efficient for very sparse matrices or for matrices whose elements have complex denominators.A.rref(method='GJ_dense')
,A.rref(method='FF_dense')
, andA.rref(method='CD_dense')
are the same as the above methods except that the dense implementations of the algorithms are used. By defaultA.rref(method='auto')
will usually choose the sparse implementations for RREF.
Regardless of which algorithm is used the returned matrix will always have the same format (sparse or dense) as the input and if
keep_domain=True
its domain will always be the same as the input.keep_domain : bool, optional
If True (the default), the domain of the returned matrix and denominator are the same as the domain of the input matrix. If False, the domain of the returned matrix might be changed to an associated ring or field if the algorithm used a different domain. This is useful for efficiency if the caller does not need the result to be in the original domain e.g. it avoids clearing denominators in the case of
A.rref(method='GJ')
.- Returns:
(DomainMatrix, scalar, list)
Reduced-row echelon form, denominator and list of pivot indices.
Examples
>>> from sympy import ZZ, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(2), ZZ(-1), ZZ(0)], ... [ZZ(-1), ZZ(2), ZZ(-1)], ... [ZZ(0), ZZ(0), ZZ(2)]], (3, 3), ZZ)
>>> A_rref, denom, pivots = A.rref_den() >>> A_rref DomainMatrix([[6, 0, 0], [0, 6, 0], [0, 0, 6]], (3, 3), ZZ) >>> denom 6 >>> pivots (0, 1, 2) >>> A_rref.to_field() / denom DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) >>> A_rref.to_field() / denom == A.convert_to(QQ).rref()[0] True
See also
rref
RREF without denominator for field domains.
sympy.polys.matrices.sdm.sdm_irref
Sparse implementation of
method='GJ'
.sympy.polys.matrices.sdm.sdm_rref_den
Sparse implementation of
method='FF'
andmethod='CD'
.sympy.polys.matrices.dense.ddm_irref
Dense implementation of
method='GJ'
.sympy.polys.matrices.dense.ddm_irref_den
Dense implementation of
method='FF'
andmethod='CD'
.clear_denoms
Clear denominators from a matrix, used by
method='CD'
.
- scc()[source]¶
Compute the strongly connected components of a DomainMatrix
- Returns:
List of lists of integers
Each list represents a strongly connected component.
Explanation
A square matrix can be considered as the adjacency matrix for a directed graph where the row and column indices are the vertices. In this graph if there is an edge from vertex
i
to vertexj
ifM[i, j]
is nonzero. This routine computes the strongly connected components of that graph which are subsets of the rows and columns that are connected by some nonzero element of the matrix. The strongly connected components are useful because many operations such as the determinant can be computed by working with the submatrices corresponding to each component.Examples
Find the strongly connected components of a matrix:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)], ... [ZZ(0), ZZ(3), ZZ(0)], ... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ) >>> M.scc() [[1], [0, 2]]
Compute the determinant from the components:
>>> MM = M.to_Matrix() >>> MM Matrix([ [1, 0, 2], [0, 3, 0], [4, 6, 5]]) >>> MM[[1], [1]] Matrix([[3]]) >>> MM[[0, 2], [0, 2]] Matrix([ [1, 2], [4, 5]]) >>> MM.det() -9 >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det() -9
The components are given in reverse topological order and represent a permutation of the rows and columns that will bring the matrix into block lower-triangular form:
>>> MM[[1, 0, 2], [1, 0, 2]] Matrix([ [3, 0, 0], [0, 1, 2], [6, 4, 5]])
- solve_den(b, method=None)[source]¶
Solve matrix equation \(Ax = b\) without fractions in the ground domain.
- Parameters:
self :
DomainMatrix
The
m x n
matrix \(A\) in the equation \(Ax = b\). Underdetermined systems are not supported som >= n
: \(A\) should be square or have more rows than columns.b :
DomainMatrix
The
n x m
matrix \(b\) for the rhs.cp : list of
DomainElement
, optionalThe characteristic polynomial of the matrix \(A\). If not given, it will be computed using
charpoly()
.method: str, optional
The method to use for solving the system. Can be one of
None
,'charpoly'
or'rref'
. IfNone
(the default) then the method will be chosen automatically.The
charpoly
method usessolve_den_charpoly()
and can only be used if the matrix is square. This method is division free and can be used with any domain.The
rref
method is fraction free but requires exact division in the ground domain (exquo
). This is also suitable for most domains. This method can be used with overdetermined systems (more equations than unknowns) but not underdetermined systems as a unique solution is sought.- Returns:
(xnum, xden) : (DomainMatrix, DomainElement)
The solution of the equation \(Ax = b\) as a pair consisting of an
n x m
matrix numeratorxnum
and a scalar denominatorxden
.The solution \(x\) is given by
x = xnum / xden
. The division freeinvariant is
A * xnum == xden * b
. If \(A\) is square then thedenominator
xden
will be a divisor of the determinant \(det(A)\).- Raises:
DMNonInvertibleMatrixError
If the system \(Ax = b\) does not have a unique solution.
Examples
Solve a matrix equation over the integers:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ) >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ) >>> xnum, xden = A.solve_den(b) >>> xden -2 >>> xnum DomainMatrix([[8], [-9]], (2, 1), ZZ) >>> A * xnum == xden * b True
Solve a matrix equation over a polynomial ring:
>>> from sympy import ZZ >>> from sympy.abc import x, y, z, a, b >>> R = ZZ[x, y, z, a, b] >>> M = DM([[x*y, x*z], [y*z, x*z]], R) >>> b = DM([[a], [b]], R) >>> M.to_Matrix() Matrix([ [x*y, x*z], [y*z, x*z]]) >>> b.to_Matrix() Matrix([ [a], [b]]) >>> xnum, xden = M.solve_den(b) >>> xden x**2*y*z - x*y*z**2 >>> xnum.to_Matrix() Matrix([ [ a*x*z - b*x*z], [-a*y*z + b*x*y]]) >>> M * xnum == xden * b True
The solution can be expressed over a fraction field which will cancel gcds between the denominator and the elements of the numerator:
>>> xsol = xnum.to_field() / xden >>> xsol.to_Matrix() Matrix([ [ (a - b)/(x*y - y*z)], [(-a*z + b*x)/(x**2*z - x*z**2)]]) >>> (M * xsol).to_Matrix() == b.to_Matrix() True
When solving a large system of equations this cancellation step might be a lot slower than
solve_den()
itself. The solution can also be expressed as aMatrix
without attempting any polynomial cancellation between the numerator and denominator giving a less simplified result more quickly:>>> xsol_uncancelled = xnum.to_Matrix() / xnum.domain.to_sympy(xden) >>> xsol_uncancelled Matrix([ [ (a*x*z - b*x*z)/(x**2*y*z - x*y*z**2)], [(-a*y*z + b*x*y)/(x**2*y*z - x*y*z**2)]]) >>> from sympy import cancel >>> cancel(xsol_uncancelled) == xsol.to_Matrix() True
See also
- solve_den_charpoly(
- b,
- cp=None,
- check=True,
Solve matrix equation \(Ax = b\) using the characteristic polynomial.
This method solves the square matrix equation \(Ax = b\) for \(x\) using the characteristic polynomial without any division or fractions in the ground domain.
- Parameters:
self : DomainMatrix
The
n x n
matrix \(A\) in the equation \(Ax = b\). Must be square and invertible.b : DomainMatrix
The
n x m
matrix \(b\) for the rhs.cp : list, optional
The characteristic polynomial of the matrix \(A\) if known. If not given, it will be computed using
charpoly()
.check : bool, optional
If
True
(the default) check that the determinant is not zero and raise an error if it is. IfFalse
then if the determinant is zero the return value will be equal to(A.adjugate()*b, 0)
.- Returns:
(xnum, detA) : (DomainMatrix, DomainElement)
The solution of the equation \(Ax = b\) as a matrix numerator and scalar denominator pair. The denominator is equal to the determinant of \(A\) and the numerator is
adj(A)*b
.The solution \(x\) is given by
x = xnum / detA
. The division freeinvariant is
A * xnum == detA * b
.If
b
is the identity matrix, thenxnum
is the adjugate matrixand we have
A * adj(A) == detA * I
.
Examples
Solve a matrix equation over the integers:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ) >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ) >>> xnum, detA = A.solve_den_charpoly(b) >>> detA -2 >>> xnum DomainMatrix([[8], [-9]], (2, 1), ZZ) >>> A * xnum == detA * b True
See also
solve_den
Main frontend for solving matrix equations with denominator.
solve_den_rref
Solve matrix equations using fraction-free RREF.
inv_den
Invert a matrix using the characteristic polynomial.
- solve_den_rref(b)[source]¶
Solve matrix equation \(Ax = b\) using fraction-free RREF
Solves the matrix equation \(Ax = b\) for \(x\) and returns the solution as a numerator/denominator pair.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ) >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ) >>> xnum, xden = A.solve_den_rref(b) >>> xden -2 >>> xnum DomainMatrix([[8], [-9]], (2, 1), ZZ) >>> A * xnum == xden * b True
See also
- sub(B)[source]¶
Subtracts two DomainMatrix matrices of the same Domain
- Parameters:
A, B: DomainMatrix
matrices to subtract
- Returns:
DomainMatrix
DomainMatrix after Subtraction
- Raises:
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.sub(B) DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
- to_Matrix()[source]¶
Convert DomainMatrix to Matrix
- Returns:
Matrix
MutableDenseMatrix for the DomainMatrix
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_Matrix() Matrix([ [1, 2], [3, 4]])
See also
- to_ddm()[source]¶
Return a
DDM
representation of self.Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) >>> ddm = A.to_ddm() >>> ddm [[1, 0], [0, 2]] >>> type(ddm) <class 'sympy.polys.matrices.ddm.DDM'>
See also
- to_dense()[source]¶
Return a dense DomainMatrix representation of self.
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) >>> A.rep {0: {0: 1}, 1: {1: 2}} >>> B = A.to_dense() >>> B.rep [[1, 0], [0, 2]]
- to_dfm()[source]¶
Return a
DFM
representation of self.Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> dfm = A.to_dfm() >>> dfm [[1, 0], [0, 2]] >>> type(dfm) <class 'sympy.polys.matrices._dfm.DFM'>
- to_dfm_or_ddm()[source]¶
Return a
DFM
orDDM
representation of self.Explanation
The
DFM
representation can only be used if the ground types areflint
and the ground domain is supported bypython-flint
. This method will return aDFM
representation if possible, but will return aDDM
representation otherwise.Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> dfm = A.to_dfm_or_ddm() >>> dfm [[1, 0], [0, 2]] >>> type(dfm) # Depends on the ground domain and ground types <class 'sympy.polys.matrices._dfm.DFM'>
- to_dod()[source]¶
Convert
DomainMatrix
to dictionary of dictionaries (dod) format.Explanation
Returns a dictionary of dictionaries representing the matrix.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> A = DM([[ZZ(1), ZZ(2), ZZ(0)], [ZZ(3), ZZ(0), ZZ(4)]], ZZ) >>> A.to_dod() {0: {0: 1, 1: 2}, 1: {0: 3, 2: 4}} >>> A.to_sparse() == A.from_dod(A.to_dod(), A.shape, A.domain) True >>> A == A.from_dod_like(A.to_dod()) True
- to_dok()[source]¶
Convert
DomainMatrix
to dictionary of keys (dok) format.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(0)], ... [ZZ(0), ZZ(4)]], (2, 2), ZZ) >>> A.to_dok() {(0, 0): 1, (1, 1): 4}
The matrix can be reconstructed by calling
from_dok()
although the reconstructed matrix will always be in sparse format:>>> A.to_sparse() == A.from_dok(A.to_dok(), A.shape, A.domain) True
See also
- to_field()[source]¶
Returns a DomainMatrix with the appropriate field
- Returns:
DomainMatrix
DomainMatrix with the appropriate field
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_field() DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
- to_flat_nz()[source]¶
Convert
DomainMatrix
to list of nonzero elements and data.Explanation
Returns a tuple
(elements, data)
whereelements
is a list of elements of the matrix with zeros possibly excluded. The matrix can be reconstructed by passing these tofrom_flat_nz()
. The idea is to be able to modify a flat list of the elements and then create a new matrix of the same shape with the modified elements in the same positions.The format of
data
differs depending on whether the underlying representation is dense or sparse but either way it represents the positions of the elements in the list in a way thatfrom_flat_nz()
can use to reconstruct the matrix. Thefrom_flat_nz()
method should be called on the sameDomainMatrix
that was used to callto_flat_nz()
.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> elements, data = A.to_flat_nz() >>> elements [1, 2, 3, 4] >>> A == A.from_flat_nz(elements, data, A.domain) True
Create a matrix with the elements doubled:
>>> elements_doubled = [2*x for x in elements] >>> A2 = A.from_flat_nz(elements_doubled, data, A.domain) >>> A2 == 2*A True
See also
- to_list()[source]¶
Convert
DomainMatrix
to list of lists.See also
- to_list_flat()[source]¶
Convert
DomainMatrix
to flat list.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.to_list_flat() [1, 2, 3, 4]
See also
- to_sdm()[source]¶
Return a
SDM
representation of self.Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> sdm = A.to_sdm() >>> sdm {0: {0: 1}, 1: {1: 2}} >>> type(sdm) <class 'sympy.polys.matrices.sdm.SDM'>
See also
- to_sparse()[source]¶
Return a sparse DomainMatrix representation of self.
Examples
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> A.rep [[1, 0], [0, 2]] >>> B = A.to_sparse() >>> B.rep {0: {0: 1}, 1: {1: 2}}
- unify(*others, fmt=None)[source]¶
Unifies the domains and the format of self and other matrices.
- Parameters:
others : DomainMatrix
fmt: string ‘dense’, ‘sparse’ or `None` (default)
The preferred format to convert to if self and other are not already in the same format. If \(None\) or not specified then no conversion if performed.
- Returns:
Tuple[DomainMatrix]
Matrices with unified domain and format
Examples
Unify the domain of DomainMatrix that have different domains:
>>> from sympy import ZZ, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ) >>> Aq, Bq = A.unify(B) >>> Aq DomainMatrix([[1, 2]], (1, 2), QQ) >>> Bq DomainMatrix([[1/2, 2]], (1, 2), QQ)
Unify the format (dense or sparse):
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ) >>> B.rep {0: {0: 1}}
>>> A2, B2 = A.unify(B, fmt='dense') >>> B2.rep [[1, 0], [0, 0]]
See also
- vstack(*B)[source]¶
Vertically stack the given matrices.
- Parameters:
B: DomainMatrix
Matrices to stack vertically.
- Returns:
DomainMatrix
DomainMatrix by stacking vertically.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
See also
Module for the DDM class.
The DDM class is an internal representation used by DomainMatrix. The letters DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using elements from a polynomial Domain (e.g. ZZ, QQ, …) in a dense-matrix representation.
Basic usage:
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices.ddm import DDM
>>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
>>> A.shape
(2, 2)
>>> A
[[0, 1], [-1, 0]]
>>> type(A)
<class 'sympy.polys.matrices.ddm.DDM'>
>>> A @ A
[[-1, 0], [0, -1]]
The ddm_* functions are designed to operate on DDM as well as on an ordinary list of lists:
>>> from sympy.polys.matrices.dense import ddm_idet
>>> ddm_idet(A, QQ)
1
>>> ddm_idet([[0, 1], [-1, 0]], QQ)
1
>>> A
[[-1, 0], [0, -1]]
Note that ddm_idet modifies the input matrix in-place. It is recommended to use the DDM.det method as a friendlier interface to this instead which takes care of copying the matrix:
>>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
>>> B.det()
1
Normally DDM would not be used directly and is just part of the internal representation of DomainMatrix which adds further functionality including e.g. unifying domains.
The dense format used by DDM is a list of lists of elements e.g. the 2x2 identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass of list and its list items are plain lists. Elements are accessed as e.g. ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the jth column of that row. Subclassing list makes e.g. iteration and indexing very efficient. We do not override __getitem__ because it would lose that benefit.
The core routines are implemented by the ddm_* functions defined in dense.py. Those functions are intended to be able to operate on a raw list-of-lists representation of matrices with most functions operating in-place. The DDM class takes care of copying etc and also stores a Domain object associated with its elements. This makes it possible to implement things like A + B with domain checking and also shape checking so that the list of lists representation is friendlier.
- class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]¶
Dense matrix based on polys domain elements
This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, , *.
- classmethod diag(values, domain)[source]¶
Returns a square diagonal matrix with values on the diagonal.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> DDM.diag([ZZ(1), ZZ(2), ZZ(3)], ZZ) [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
- classmethod from_dod(dod, shape, domain)[source]¶
Create a
DDM
from a dictionary of dictionaries (dod) format.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> dod = {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} >>> A = DDM.from_dod(dod, (2, 2), QQ) >>> A [[1, 2], [3, 4]]
- classmethod from_dok(dok, shape, domain)[source]¶
Create a
DDM
from a dictionary of keys (dok) format.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> dok = {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4} >>> A = DDM.from_dok(dok, (2, 2), QQ) >>> A [[1, 2], [3, 4]]
- classmethod from_flat_nz(elements, data, domain)[source]¶
Reconstruct a
DDM
after callingto_flat_nz()
.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> elements, data = A.to_flat_nz() >>> elements [1, 2, 3, 4] >>> A == DDM.from_flat_nz(elements, data, A.domain) True
- classmethod from_list(rowslist, shape, domain)[source]¶
Create a
DDM
from a list of lists.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM.from_list([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A [[0, 1], [-1, 0]] >>> A == DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) True
See also
- classmethod from_list_flat(flat, shape, domain)[source]¶
Create a
DDM
from a flat list of elements.Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM.from_list_flat([1, 2, 3, 4], (2, 2), QQ) >>> A [[1, 2], [3, 4]] >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain) True
- hstack(*B)[source]¶
Horizontally stacks
DDM
matrices.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) [[1, 2, 5, 6], [3, 4, 7, 8]]
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
- is_diagonal()[source]¶
Says whether this matrix is diagonal. True can be returned even if the matrix is not square.
- is_lower()[source]¶
Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.
- is_upper()[source]¶
Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.
- iter_items()[source]¶
Iterate over indices and values of nonzero elements of the matrix.
Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ) >>> list(A.iter_items()) [((0, 0), 1), ((1, 0), 3), ((1, 1), 4)]
- iter_values()[source]¶
Iterater over the non-zero values of the matrix.
Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ) >>> list(A.iter_values()) [1, 3, 4]
- nullspace()[source]¶
Returns a basis for the nullspace of a.
The domain of the matrix must be a field.
- nullspace_from_rref(pivots=None)[source]¶
Compute the nullspace of a matrix from its rref.
The domain of the matrix can be any domain.
Returns a tuple (basis, nonpivots).
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace
The higher level interface to this function.
- qr()[source]¶
QR decomposition for DDM.
- Returns:
Q: Orthogonal matrix as a DDM.
R: Upper triangular matrix as a DDM.
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.qr
The higher-level interface to this function.
- rref()[source]¶
Reduced-row echelon form of a and list of pivots.
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
Higher level interface to this function.
sympy.polys.matrices.dense.ddm_irref
The underlying algorithm.
- rref_den()[source]¶
Reduced-row echelon form of a with denominator and list of pivots
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher level interface to this function.
sympy.polys.matrices.dense.ddm_irref_den
The underlying algorithm.
- scc()[source]¶
Strongly connected components of a square matrix a.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.scc() [[0], [1]]
- to_ddm()[source]¶
Convert to a
DDM
.This just returns
self
but exists to parallel the corresponding method in other matrix types likeSDM
.
- to_dfm()[source]¶
-
Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dfm() [[1, 2], [3, 4]] >>> type(A.to_dfm()) <class 'sympy.polys.matrices._dfm.DFM'>
See also
- to_dfm_or_ddm()[source]¶
Convert to
DFM
if possible or otherwise return self.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dfm_or_ddm() [[1, 2], [3, 4]] >>> type(A.to_dfm_or_ddm()) <class 'sympy.polys.matrices._dfm.DFM'>
- to_dod()[source]¶
Convert to a dictionary of dictionaries (dod) format.
Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dod() {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
- to_dok()[source]¶
Convert
DDM
to dictionary of keys (dok) format.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dok() {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4}
- to_flat_nz()[source]¶
Convert to a flat list of nonzero elements and data.
Explanation
This is used to operate on a list of the elements of a matrix and then reconstruct a matrix using
from_flat_nz()
. Zero elements are included in the list but that may change in the future.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> elements, data = A.to_flat_nz() >>> elements [1, 2, 3, 4] >>> A == DDM.from_flat_nz(elements, data, A.domain) True
- to_list()[source]¶
Convert to a list of lists.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_list() [[1, 2], [3, 4]]
- to_list_flat()[source]¶
Convert to a flat list of elements.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_list_flat() [1, 2, 3, 4] >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain) True
- to_sdm()[source]¶
Convert to a
SDM
.Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_sdm() {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} >>> type(A.to_sdm()) <class 'sympy.polys.matrices.sdm.SDM'>
See also
- vstack(*B)[source]¶
Vertically stacks
DDM
matrices.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
Module for the ddm_* routines for operating on a matrix in list of lists matrix representation.
These routines are used internally by the DDM class which also provides a friendlier interface for them. The idea here is to implement core matrix routines in a way that can be applied to any simple list representation without the need to use any particular matrix class. For example we can compute the RREF of a matrix like:
>>> from sympy.polys.matrices.dense import ddm_irref
>>> M = [[1, 2, 3], [4, 5, 6]]
>>> pivots = ddm_irref(M)
>>> M
[[1.0, 0.0, -1.0], [0, 1.0, 2.0]]
These are lower-level routines that work mostly in place.The routines at this level should not need to know what the domain of the elements is but should ideally document what operations they will use and what functions they need to be provided with.
The next-level up is the DDM class which uses these routines but wraps them up with an interface that handles copying etc and keeps track of the Domain of the elements of the matrix:
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.matrices.ddm import DDM
>>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
>>> M
[[1, 2, 3], [4, 5, 6]]
>>> Mrref, pivots = M.rref()
>>> Mrref
[[1, 0, -1], [0, 1, 2]]
- class sympy.polys.matrices.dense.R¶
Type variable for the elements of the matrix that are in a ring
alias of TypeVar(‘R’, bound=
RingElement
)
- class sympy.polys.matrices.dense.T¶
Type variable for the elements of the matrix
alias of TypeVar(‘T’)
- sympy.polys.matrices.dense.ddm_berk(M, K)[source]¶
Berkowitz algorithm for computing the characteristic polynomial.
Explanation
The Berkowitz algorithm is a division-free algorithm for computing the characteristic polynomial of a matrix over any commutative ring using only arithmetic in the coefficient ring.
Examples
>>> from sympy import Matrix >>> from sympy.polys.matrices.dense import ddm_berk >>> from sympy.polys.domains import ZZ >>> M = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] >>> ddm_berk(M, ZZ) [[1], [-5], [-2]] >>> Matrix(M).charpoly() PurePoly(lambda**2 - 5*lambda - 2, lambda, domain='ZZ')
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
The high-level interface to this function.
References
- sympy.polys.matrices.dense.ddm_idet(a, K)[source]¶
a <– echelon(a); return det
Explanation
Compute the determinant of \(a\) using the Bareiss fraction-free algorithm. The matrix \(a\) is modified in place. Its diagonal elements are the determinants of the leading principal minors. The determinant of \(a\) is returned.
The domain \(K\) must support exact division (
K.exquo
). This method is suitable for most exact rings and fields like ZZ, QQ and QQ<a> but not for inexact domains like RR and CC.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.ddm import ddm_idet >>> a = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]] >>> a [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> ddm_idet(a, ZZ) 0 >>> a [[1, 2, 3], [4, -3, -6], [7, -6, 0]] >>> [a[i][i] for i in range(len(a))] [1, -3, 0]
References
- sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]¶
ainv <– inv(a)
Compute the inverse of a matrix \(a\) over a field \(K\) using Gauss-Jordan elimination. The result is stored in \(ainv\).
Uses division in the ground domain which should be an exact field.
Examples
>>> from sympy.polys.matrices.ddm import ddm_iinv, ddm_imatmul >>> from sympy import QQ >>> a = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] >>> ainv = [[None, None], [None, None]] >>> ddm_iinv(ainv, a, QQ) >>> ainv [[-2, 1], [3/2, -1/2]] >>> result = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]] >>> ddm_imatmul(result, a, ainv) >>> result [[1, 0], [0, 1]]
See also
ddm_irref
the underlying routine.
- sympy.polys.matrices.dense.ddm_ilu(a)[source]¶
a <– LU(a)
Computes the LU decomposition of a matrix in place. Returns a list of row swaps that were performed.
Uses division in the ground domain which should be an exact field.
This is only suitable for domains like GF(p), QQ, QQ_I and QQ<a>. With a rational function field like K(x) it is better to clear denominators and use division-free algorithms. Pivoting is used to avoid exact zeros but not for floating point accuracy so RR and CC are not suitable (use
ddm_irref()
instead).Examples
>>> from sympy.polys.matrices.dense import ddm_ilu >>> from sympy import QQ >>> a = [[QQ(1, 2), QQ(1, 3)], [QQ(1, 4), QQ(1, 5)]] >>> swaps = ddm_ilu(a) >>> swaps [] >>> a [[1/2, 1/3], [1/2, 1/30]]
The same example using
Matrix
:>>> from sympy import Matrix, S >>> M = Matrix([[S(1)/2, S(1)/3], [S(1)/4, S(1)/5]]) >>> L, U, swaps = M.LUdecomposition() >>> L Matrix([ [ 1, 0], [1/2, 1]]) >>> U Matrix([ [1/2, 1/3], [ 0, 1/30]]) >>> swaps []
- sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]¶
x <– solve(L*U*x = swaps(b))
Solve a linear system, \(A*x = b\), given an LU factorization of \(A\).
Uses division in the ground domain which must be a field.
Modifies \(x\) in place.
Examples
Compute the LU decomposition of \(A\) (in place):
>>> from sympy import QQ >>> from sympy.polys.matrices.dense import ddm_ilu, ddm_ilu_solve >>> A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] >>> swaps = ddm_ilu(A) >>> A [[1, 2], [3, -2]] >>> L = U = A
Solve the linear system:
>>> b = [[QQ(5)], [QQ(6)]] >>> x = [[None], [None]] >>> ddm_ilu_solve(x, L, U, swaps, b) >>> x [[-4], [9/2]]
See also
ddm_ilu
Compute the LU decomposition of a matrix in place.
ddm_ilu_split
Compute the LU decomposition of a matrix and separate \(L\) and \(U\).
sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve
Higher level interface to this function.
- sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]¶
L, U <– LU(U)
Compute the LU decomposition of a matrix \(L\) in place and store the lower and upper triangular matrices in \(L\) and \(U\), respectively. Returns a list of row swaps that were performed.
Uses division in the ground domain which should be an exact field.
Examples
>>> from sympy.polys.matrices.ddm import ddm_ilu_split >>> from sympy import QQ >>> L = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]] >>> U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] >>> swaps = ddm_ilu_split(L, U, QQ) >>> swaps [] >>> L [[0, 0], [3, 0]] >>> U [[1, 2], [0, -2]]
See also
- sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]¶
In-place reduced row echelon form of a matrix.
Compute the reduced row echelon form of \(a\). Modifies \(a\) in place and returns a list of the pivot columns.
Uses naive Gauss-Jordan elimination in the ground domain which must be a field.
This routine is only really suitable for use with simple field domains like GF(p), QQ and QQ<a> although even for QQ with larger matrices it is possibly more efficient to use fraction free approaches.
This method is not suitable for use with rational function fields (K(x)) because the elements will blowup leading to costly gcd operations. In this case clearing denominators and using fraction free approaches is likely to be more efficient.
For inexact numeric domains like RR and CC pass
_partial_pivot=True
to use partial pivoting to control rounding errors.Examples
>>> from sympy.polys.matrices.dense import ddm_irref >>> from sympy import QQ >>> M = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]] >>> pivots = ddm_irref(M) >>> M [[1, 0, -1], [0, 1, 2]] >>> pivots [0, 1]
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
Higher level interface to this routine.
ddm_irref_den
The fraction free version of this routine.
sdm_irref
A sparse version of this routine.
References
- sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]¶
a <– rref(a); return (den, pivots)
Compute the fraction-free reduced row echelon form (RREF) of \(a\). Modifies \(a\) in place and returns a tuple containing the denominator of the RREF and a list of the pivot columns.
Explanation
The algorithm used is the fraction-free version of Gauss-Jordan elimination described as FFGJ in [R787]. Here it is modified to handle zero or missing pivots and to avoid redundant arithmetic.
The domain \(K\) must support exact division (
K.exquo
) but does not need to be a field. This method is suitable for most exact rings and fields like ZZ, QQ and QQ<a>. In the case of QQ or K(x) it might be more efficient to clear denominators and use ZZ or K[x] instead.For inexact domains like RR and CC use
ddm_irref
instead.Examples
>>> from sympy.polys.matrices.dense import ddm_irref_den >>> from sympy import ZZ, Matrix >>> M = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)]] >>> den, pivots = ddm_irref_den(M, ZZ) >>> M [[-3, 0, 3], [0, -3, -6]] >>> den -3 >>> pivots [0, 1] >>> Matrix(M).rref()[0] Matrix([ [1, 0, -1], [0, 1, 2]])
See also
ddm_irref
A version of this routine that uses field division.
sdm_irref
A sparse version of
ddm_irref()
.sdm_rref_den
A sparse version of
ddm_irref_den()
.sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher level interface.
References
[R787] (1,2)Fraction-free algorithms for linear and polynomial equations. George C. Nakos , Peter R. Turner , Robert M. Williams. https://dl.acm.org/doi/10.1145/271130.271133
- sympy.polys.matrices.dense.ddm_transpose(
- matrix: Sequence[Sequence[T]],
matrix transpose
- class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]¶
A ring element.
Must support
+
,-
,*
,**
and-
.
Module for the SDM class.
- class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]¶
Sparse matrix based on polys domain elements
This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic +, -, , *.
In order to create a new
SDM
, a dict of dicts mapping non-zero elements to their corresponding row and column in the matrix is needed.We also need to specify the shape and
Domain
of ourSDM
object.We declare a 2x2
SDM
matrix belonging to QQ domain as shown below. The 2x2 Matrix in the example is\[\begin{split}A = \left[\begin{array}{ccc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right]\end{split}\]>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(1, 2)}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> A {0: {1: 1/2}}
We can manipulate
SDM
the same way as a Matrix class>>> from sympy import ZZ >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A + B {0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
Multiplication
>>> A*B {0: {1: 8}, 1: {0: 3}} >>> A*ZZ(2) {0: {1: 4}, 1: {0: 2}}
- add(B)[source]¶
Adds two
SDM
matricesExamples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A.add(B) {0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
- charpoly()[source]¶
Returns the coefficients of the characteristic polynomial of the
SDM
matrix. These elements will be domain elements. The domain of the elements will be same as domain of theSDM
.Examples
>>> from sympy import QQ, Symbol >>> from sympy.polys.matrices.sdm import SDM >>> from sympy.polys import Poly >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.charpoly() [1, -5, -2]
We can create a polynomial using the coefficients using
Poly
>>> x = Symbol('x') >>> p = Poly(A.charpoly(), x, domain=A.domain) >>> p Poly(x**2 - 5*x - 2, x, domain='QQ')
- convert_to(K)[source]¶
Converts the
Domain
of aSDM
matrix to KExamples
>>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.convert_to(QQ) {0: {1: 2}, 1: {0: 1}}
- copy()[source]¶
Returns the copy of a
SDM
objectExamples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(2)}, 1:{}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> B = A.copy() >>> B {0: {1: 2}, 1: {}}
- det()[source]¶
Returns determinant of A
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.det() -2
- classmethod eye(shape, domain)[source]¶
Returns a identity
SDM
matrix of dimensions size x size, belonging to the specified domainExamples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> I = SDM.eye((2, 2), QQ) >>> I {0: {0: 1}, 1: {1: 1}}
- classmethod from_ddm(ddm)[source]¶
-
Examples
>>> from sympy.polys.matrices.ddm import DDM >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> ddm = DDM( [[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ) >>> A = SDM.from_ddm(ddm) >>> A {0: {0: 1/2}, 1: {1: 3/4}} >>> SDM.from_ddm(ddm).to_ddm() == ddm True
See also
- classmethod from_dod(dod, shape, domain)[source]¶
Create
SDM
from dictionary of dictionaries (dod) format.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> dod = {0: {1: QQ(2)}, 1: {0: QQ(3)}} >>> A = SDM.from_dod(dod, (2, 2), QQ) >>> A {0: {1: 2}, 1: {0: 3}} >>> A == SDM.from_dod(A.to_dod(), A.shape, A.domain) True
- classmethod from_dok(dok, shape, domain)[source]¶
Create
SDM
from dictionary of keys (dok) format.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> dok = {(0, 1): QQ(2), (1, 0): QQ(3)} >>> A = SDM.from_dok(dok, (2, 2), QQ) >>> A {0: {1: 2}, 1: {0: 3}} >>> A == SDM.from_dok(A.to_dok(), A.shape, A.domain) True
See also
- classmethod from_flat_nz(elements, data, domain)[source]¶
Reconstruct a
SDM
after callingto_flat_nz()
.See
to_flat_nz()
for explanation.
- classmethod from_list(ddm, shape, domain)[source]¶
Create
SDM
object from a list of lists.- Parameters:
ddm:
list of lists containing domain elements
shape:
Dimensions of
SDM
matrixdomain:
- Returns:
SDM
containing elements of ddm
Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]] >>> A = SDM.from_list(ddm, (2, 2), QQ) >>> A {0: {0: 1/2}, 1: {1: 3/4}}
See also
- classmethod from_list_flat(elements, shape, domain)[source]¶
Create
SDM
from a flat list of elements.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM.from_list_flat([QQ(0), QQ(2), QQ(0), QQ(0)], (2, 2), QQ) >>> A {0: {1: 2}} >>> A == A.from_list_flat(A.to_list_flat(), A.shape, A.domain) True
See also
- hstack(*B)[source]¶
Horizontally stacks
SDM
matrices.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) >>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) >>> A.hstack(B) {0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}}
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) >>> A.hstack(B, C) {0: {0: 1, 1: 2, 2: 5, 3: 6, 4: 9, 5: 10}, 1: {0: 3, 1: 4, 2: 7, 3: 8, 4: 11, 5: 12}}
- inv()[source]¶
Returns inverse of a matrix A
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.inv() {0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}}
- is_diagonal()[source]¶
Says whether this matrix is diagonal. True can be returned even if the matrix is not square.
- is_lower()[source]¶
Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.
- is_upper()[source]¶
Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.
- iter_items()[source]¶
Iterate over indices and values of the nonzero elements.
Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0: {1: QQ(2)}, 1: {0: QQ(3)}}, (2, 2), QQ) >>> list(A.iter_items()) [((0, 1), 2), ((1, 0), 3)]
- iter_values()[source]¶
Iterate over the nonzero values of a
SDM
matrix.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0: {1: QQ(2)}, 1: {0: QQ(3)}}, (2, 2), QQ) >>> list(A.iter_values()) [2, 3]
- lu()[source]¶
Returns LU decomposition for a matrix A
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.lu() ({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, [])
- lu_solve(b)[source]¶
Uses LU decomposition to solve Ax = b,
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ) >>> A.lu_solve(b) {1: {0: 1/2}}
- matmul(B)[source]¶
Performs matrix multiplication of two SDM matrices
- Parameters:
A, B: SDM to multiply
- Returns:
SDM
SDM after multiplication
- Raises:
DomainError
If domain of A does not match with that of B
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}, 1:{0:ZZ(4)}}, (2, 2), ZZ) >>> A.matmul(B) {0: {0: 8}, 1: {0: 2, 1: 3}}
- mul(b)[source]¶
Multiplies each element of A with a scalar b
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.mul(ZZ(3)) {0: {1: 6}, 1: {0: 3}}
- neg()[source]¶
Returns the negative of a
SDM
matrixExamples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.neg() {0: {1: -2}, 1: {0: -1}}
- classmethod new(sdm, shape, domain)[source]¶
- Parameters:
sdm: A dict of dicts for non-zero elements in SDM
shape: tuple representing dimension of SDM
domain: Represents :py:class:`~.Domain` of SDM
- Returns:
An
SDM
object
Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1: QQ(2)}} >>> A = SDM.new(elemsdict, (2, 2), QQ) >>> A {0: {1: 2}}
- nnz()[source]¶
Number of non-zero elements in the
SDM
matrix.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.nnz() 2
- nullspace()[source]¶
Nullspace of a
SDM
matrix A.The domain of the matrix must be a field.
It is better to use the
nullspace()
method rather than this method which is otherwise no longer used.Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ) >>> A.nullspace() ({0: {0: -2, 1: 1}}, [1])
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace
The preferred way to get the nullspace of a matrix.
- nullspace_from_rref(pivots=None)[source]¶
Returns nullspace for a
SDM
matrixA
in RREF.The domain of the matrix can be any domain.
The matrix must already be in reduced row echelon form (RREF).
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ) >>> A_rref, pivots = A.rref() >>> A_null, nonpivots = A_rref.nullspace_from_rref(pivots) >>> A_null {0: {0: -2, 1: 1}} >>> pivots [0] >>> nonpivots [1]
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace
The higher-level function that would usually be called instead of calling this one directly.
sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace_from_rref
The higher-level direct equivalent of this function.
sympy.polys.matrices.ddm.DDM.nullspace_from_rref
The equivalent function for dense
DDM
matrices.
- qr()[source]¶
QR decomposition for SDM (Sparse Domain Matrix).
- Returns:
Q: Orthogonal matrix as a SDM.
R: Upper triangular matrix as a SDM.
- rref()[source]¶
Returns reduced-row echelon form and list of pivots for the
SDM
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ) >>> A.rref() ({0: {0: 1, 1: 2}}, [0])
- rref_den()[source]¶
Returns reduced-row echelon form (RREF) with denominator and pivots.
Examples
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ) >>> A.rref_den() ({0: {0: 1, 1: 2}}, 1, [0])
- scc()[source]¶
Strongly connected components of a square matrix A.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0: ZZ(2)}, 1:{1:ZZ(1)}}, (2, 2), ZZ) >>> A.scc() [[0], [1]]
- sub(B)[source]¶
Subtracts two
SDM
matricesExamples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A.sub(B) {0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}}
- to_ddm()[source]¶
Convert a
SDM
object to aDDM
objectExamples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.to_ddm() [[0, 2], [0, 0]]
- to_dfm()[source]¶
Convert a
SDM
object to aDFM
objectExamples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.to_dfm() [[0, 2], [0, 0]]
- to_dfm_or_ddm()[source]¶
Convert to
DFM
if possible, elseDDM
.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.to_dfm_or_ddm() [[0, 2], [0, 0]] >>> type(A.to_dfm_or_ddm()) # depends on the ground types <class 'sympy.polys.matrices._dfm.DFM'>
- to_dod()[source]¶
Convert to dictionary of dictionaries (dod) format.
Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0: {1: QQ(2)}, 1: {0: QQ(3)}}, (2, 2), QQ) >>> A.to_dod() {0: {1: 2}, 1: {0: 3}}
- to_dok()[source]¶
Convert to dictionary of keys (dok) format.
Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0: {1: QQ(2)}, 1: {0: QQ(3)}}, (2, 2), QQ) >>> A.to_dok() {(0, 1): 2, (1, 0): 3}
See also
- to_flat_nz()[source]¶
Convert
SDM
to a flat list of nonzero elements and data.Explanation
This is used to operate on a list of the elements of a matrix and then reconstruct a modified matrix with elements in the same positions using
from_flat_nz()
. Zero elements are omitted from the list.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{0: QQ(3)}}, (2, 2), QQ) >>> elements, data = A.to_flat_nz() >>> elements [2, 3] >>> A == A.from_flat_nz(elements, data, A.domain) True
- to_list()[source]¶
Convert a
SDM
object to a list of lists.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(2)}, 1:{}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> A.to_list() [[0, 2], [0, 0]]
- to_list_flat()[source]¶
Convert
SDM
to a flat list.Examples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{0: QQ(3)}}, (2, 2), QQ) >>> A.to_list_flat() [0, 2, 3, 0] >>> A == A.from_list_flat(A.to_list_flat(), A.shape, A.domain) True
See also
- transpose()[source]¶
Returns the transpose of a
SDM
matrixExamples
>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.transpose() {1: {0: 2}}
- vstack(*B)[source]¶
Vertically stacks
SDM
matrices.Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) >>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) >>> A.vstack(B) {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}}
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) >>> A.vstack(B, C) {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}, 4: {0: 9, 1: 10}, 5: {0: 11, 1: 12}}
- classmethod zeros(shape, domain)[source]¶
Returns a
SDM
of size shape, belonging to the specified domainIn the example below we declare a matrix A where,
\[\begin{split}A := \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]\end{split}\]>>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM.zeros((2, 3), QQ) >>> A {}
- sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]¶
Berkowitz algorithm for computing the characteristic polynomial.
Explanation
The Berkowitz algorithm is a division-free algorithm for computing the characteristic polynomial of a matrix over any commutative ring using only arithmetic in the coefficient ring. This implementation is for sparse matrices represented in a dict-of-dicts format (like
SDM
).Examples
>>> from sympy import Matrix >>> from sympy.polys.matrices.sdm import sdm_berk >>> from sympy.polys.domains import ZZ >>> M = {0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}} >>> sdm_berk(M, 2, ZZ) {0: 1, 1: -5, 2: -2} >>> Matrix([[1, 2], [3, 4]]).charpoly() PurePoly(lambda**2 - 5*lambda - 2, lambda, domain='ZZ')
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
The high-level interface to this function.
sympy.polys.matrices.dense.ddm_berk
The dense version of this function.
References
- sympy.polys.matrices.sdm.sdm_irref(A)[source]¶
RREF and pivots of a sparse matrix A.
Compute the reduced row echelon form (RREF) of the matrix A and return a list of the pivot columns. This routine does not work in place and leaves the original matrix A unmodified.
The domain of the matrix must be a field.
Examples
This routine works with a dict of dicts sparse representation of a matrix:
>>> from sympy import QQ >>> from sympy.polys.matrices.sdm import sdm_irref >>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}} >>> Arref, pivots, _ = sdm_irref(A) >>> Arref {0: {0: 1}, 1: {1: 1}} >>> pivots [0, 1]
The analogous calculation with
MutableDenseMatrix
would be>>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> Mrref, pivots = M.rref() >>> Mrref Matrix([ [1, 0], [0, 1]]) >>> pivots (0, 1)
Notes
The cost of this algorithm is determined purely by the nonzero elements of the matrix. No part of the cost of any step in this algorithm depends on the number of rows or columns in the matrix. No step depends even on the number of nonzero rows apart from the primary loop over those rows. The implementation is much faster than ddm_rref for sparse matrices. In fact at the time of writing it is also (slightly) faster than the dense implementation even if the input is a fully dense matrix so it seems to be faster in all cases.
The elements of the matrix should support exact division with
/
. For example elements of any domain that is a field (e.g.QQ
) should be fine. No attempt is made to handle inexact arithmetic.See also
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
The higher-level function that would normally be used to call this routine.
sympy.polys.matrices.dense.ddm_irref
The dense equivalent of this routine.
sdm_rref_den
Fraction-free version of this routine.
- sympy.polys.matrices.sdm.sdm_nullspace_from_rref(
- A,
- one,
- ncols,
- pivots,
- nonzero_cols,
Get nullspace from A which is in RREF
- sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]¶
Get a particular solution from A which is in RREF
- sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]¶
Return the reduced row echelon form (RREF) of A with denominator.
The RREF is computed using fraction-free Gauss-Jordan elimination.
Explanation
The algorithm used is the fraction-free version of Gauss-Jordan elimination described as FFGJ in [R789]. Here it is modified to handle zero or missing pivots and to avoid redundant arithmetic. This implementation is also optimized for sparse matrices.
The domain \(K\) must support exact division (
K.exquo
) but does not need to be a field. This method is suitable for most exact rings and fields like ZZ, QQ and QQ<a>. In the case of QQ or K(x) it might be more efficient to clear denominators and use ZZ or K[x] instead.For inexact domains like RR and CC use
ddm_irref
instead.Examples
>>> from sympy.polys.matrices.sdm import sdm_rref_den >>> from sympy.polys.domains import ZZ >>> A = {0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}} >>> A_rref, den, pivots = sdm_rref_den(A, ZZ) >>> A_rref {0: {0: -2}, 1: {1: -2}} >>> den -2 >>> pivots [0, 1]
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher-level interface to
sdm_rref_den
that would usually be used instead of calling this function directly.sympy.polys.matrices.sdm.sdm_rref_den
The
SDM
method that uses this function.sdm_irref
Computes RREF using field division.
ddm_irref_den
The dense version of this algorithm.
References
[R789] (1,2)Fraction-free algorithms for linear and polynomial equations. George C. Nakos , Peter R. Turner , Robert M. Williams. https://dl.acm.org/doi/10.1145/271130.271133
- class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]¶
Dense FLINT matrix. This class is a wrapper for matrices from python-flint.
>>> from sympy.polys.domains import ZZ >>> from sympy.polys.matrices.dfm import DFM >>> dfm = DFM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> dfm [[1, 2], [3, 4]] >>> dfm.rep [1, 2] [3, 4] >>> type(dfm.rep) <class 'flint._flint.fmpz_mat'>
Usually, the DFM class is not instantiated directly, but is created as the internal representation of
DomainMatrix
. When \(SYMPY_GROUND_TYPES\) is set to \(flint\) and \(python-flint\) is installed, theDFM
class is used automatically as the internal representation ofDomainMatrix
in dense format if the domain is supported by python-flint.>>> from sympy.polys.matrices.domainmatrix import DM >>> dM = DM([[1, 2], [3, 4]], ZZ) >>> dM.rep [[1, 2], [3, 4]]
A
DomainMatrix
can be converted toDFM
by calling theto_dfm()
method:>>> dM.to_dfm() [[1, 2], [3, 4]]
- charpoly()[source]¶
Compute the characteristic polynomial of the matrix using FLINT.
Examples
>>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> dfm = M.to_DM().to_dfm() # need ground types = 'flint' >>> dfm [[1, 2], [3, 4]] >>> dfm.charpoly() [1, -5, -2]
Notes
Calls the
.charpoly()
method of the underlying FLINT matrix.For ZZ or QQ this calls
fmpz_mat_charpoly
orfmpq_mat_charpoly
respectively.At the time of writing the implementation of
fmpq_mat_charpoly
clears a denominator from the whole matrix and then callsfmpz_mat_charpoly
. The coefficients of the characteristic polynomial are then multiplied by powers of the denominator.The
fmpz_mat_charpoly
method uses a modular algorithm with CRT reconstruction. The modular algorithm usesnmod_mat_charpoly
which uses Berkowitz for small matrices and non-prime moduli or otherwise the Danilevsky method.See also
sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
Higher level interface to compute the characteristic polynomial of a matrix.
- det()[source]¶
Compute the determinant of the matrix using FLINT.
Examples
>>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> dfm = M.to_DM().to_dfm() >>> dfm [[1, 2], [3, 4]] >>> dfm.det() -2
Notes
Calls the
.det()
method of the underlying FLINT matrix.For ZZ or QQ this calls
fmpz_mat_det
orfmpq_mat_det
respectively.At the time of writing the implementation of
fmpz_mat_det
uses one of several algorithms depending on the size of the matrix and bit size of the entries. The algorithms used are:Cofactor for very small (up to 4x4) matrices.
Bareiss for small (up to 25x25) matrices.
Modular algorithms for larger matrices (up to 60x60) or for larger matrices with large bit sizes.
Modular “accelerated” for larger matrices (60x60 upwards) if the bit size is smaller than the dimensions of the matrix.
The implementation of
fmpq_mat_det
clears denominators from each row (not the whole matrix) and then callsfmpz_mat_det
and divides by the product of the denominators.See also
sympy.polys.matrices.domainmatrix.DomainMatrix.det
Higher level interface to compute the determinant of a matrix.
- classmethod from_flat_nz(elements, data, domain)[source]¶
Inverse of
to_flat_nz()
.
- classmethod from_list_flat(elements, shape, domain)[source]¶
Inverse of
to_list_flat()
.
- inv()[source]¶
Compute the inverse of a matrix using FLINT.
Examples
>>> from sympy import Matrix, QQ >>> M = Matrix([[1, 2], [3, 4]]) >>> dfm = M.to_DM().to_dfm().convert_to(QQ) >>> dfm [[1, 2], [3, 4]] >>> dfm.inv() [[-2, 1], [3/2, -1/2]] >>> dfm.matmul(dfm.inv()) [[1, 0], [0, 1]]
Notes
Calls the
.inv()
method of the underlying FLINT matrix.For now this will raise an error if the domain is ZZ but will use the FLINT method for QQ.
The FLINT methods for ZZ and QQ are
fmpz_mat_inv
andfmpq_mat_inv
respectively. Thefmpz_mat_inv
method computes an inverse with denominator. This is implemented by callingfmpz_mat_solve
(see notes inlu_solve()
about the algorithm).The
fmpq_mat_inv
method clears denominators from each row and then multiplies those into the rhs identity matrix before callingfmpz_mat_solve
.See also
sympy.polys.matrices.domainmatrix.DomainMatrix.inv
Higher level method for computing the inverse of a matrix.
- lll(delta=0.75)[source]¶
Compute LLL-reduced basis using FLINT.
See
lll_transform()
for more information.Examples
>>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6]]) >>> M.to_DM().to_dfm().lll() [[2, 1, 0], [-1, 1, 3]]
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.lll
Higher level interface to compute LLL-reduced basis.
lll_transform
Compute LLL-reduced basis and transform matrix.
- lll_transform(delta=0.75)[source]¶
Compute LLL-reduced basis and transform using FLINT.
Examples
>>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6]]).to_DM().to_dfm() >>> M_lll, T = M.lll_transform() >>> M_lll [[2, 1, 0], [-1, 1, 3]] >>> T [[-2, 1], [3, -1]] >>> T.matmul(M) == M_lll True
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.lll
Higher level interface to compute LLL-reduced basis.
lll
Compute LLL-reduced basis without transform matrix.
- lu_solve(rhs)[source]¶
Solve a matrix equation using FLINT.
Examples
>>> from sympy import Matrix, QQ >>> M = Matrix([[1, 2], [3, 4]]) >>> dfm = M.to_DM().to_dfm().convert_to(QQ) >>> dfm [[1, 2], [3, 4]] >>> rhs = Matrix([1, 2]).to_DM().to_dfm().convert_to(QQ) >>> dfm.lu_solve(rhs) [[0], [1/2]]
Notes
Calls the
.solve()
method of the underlying FLINT matrix.For now this will raise an error if the domain is ZZ but will use the FLINT method for QQ.
The FLINT methods for ZZ and QQ are
fmpz_mat_solve
andfmpq_mat_solve
respectively. Thefmpq_mat_solve
method uses one of two algorithms:For small matrices (<25 rows) it clears denominators between the matrix and rhs and uses
fmpz_mat_solve
.For larger matrices it uses
fmpq_mat_solve_dixon
which is a modular approach with CRT reconstruction over QQ.
The
fmpz_mat_solve
method uses one of four algorithms:For very small (<= 3x3) matrices it uses a Cramer’s rule.
For small (<= 15x15) matrices it uses a fraction-free LU solve.
Otherwise it uses either Dixon or another multimodular approach.
See also
sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve
Higher level interface to solve a matrix equation.
- sympy.polys.matrices.normalforms.smith_normal_form(m)[source]¶
Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import smith_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(smith_normal_form(m).to_Matrix()) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, 30]])
- sympy.polys.matrices.normalforms.hermite_normal_form(
- A,
- *,
- D=None,
- check_rank=False,
Compute the Hermite Normal Form of
DomainMatrix
A over ZZ.- Parameters:
A : \(m \times n\)
DomainMatrix
over ZZ.D : ZZ, optional
Let \(W\) be the HNF of A. If known in advance, a positive integer D being any multiple of \(\det(W)\) may be provided. In this case, if A also has rank \(m\), then we may use an alternative algorithm that works mod D in order to prevent coefficient explosion.
check_rank : boolean, optional (default=False)
The basic assumption is that, if you pass a value for D, then you already believe that A has rank \(m\), so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo D algorithm to be used if the check fails), then set check_rank to
True
.- Returns:
-
The HNF of matrix A.
- Raises:
DMDomainError
DMShapeError
If the mod D algorithm is used but the matrix has more rows than columns.
Examples
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import hermite_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(hermite_normal_form(m).to_Matrix()) Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
References
[R790]Cohen, H. A Course in Computational Algebraic Number Theory. (See Algorithms 2.4.5 and 2.4.8.)