Utilities¶
- sympy.combinatorics.util._base_ordering(base, degree)[source]¶
Order \(\{0, 1, \dots, n-1\}\) so that base points come first and in order.
- Parameters:
base : the base
degree : the degree of the associated permutation group
- Returns:
A list
base_ordering
such thatbase_ordering[point]
is thenumber of
point
in the ordering.
Examples
>>> from sympy.combinatorics import SymmetricGroup >>> from sympy.combinatorics.util import _base_ordering >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> _base_ordering(S.base, S.degree) [0, 1, 2, 3]
Notes
This is used in backtrack searches, when we define a relation \(\ll\) on the underlying set for a permutation group of degree \(n\), \(\{0, 1, \dots, n-1\}\), so that if \((b_1, b_2, \dots, b_k)\) is a base we have \(b_i \ll b_j\) whenever \(i<j\) and \(b_i \ll a\) for all \(i\in\{1,2, \dots, k\}\) and \(a\) is not in the base. The idea is developed and applied to backtracking algorithms in [1], pp.108-132. The points that are not in the base are taken in increasing order.
References
[R95]Holt, D., Eick, B., O’Brien, E. “Handbook of computational group theory”
- sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]¶
Checks for cycles of prime length p with n/2 < p < n-2.
Explanation
Here \(n\) is the degree of the permutation. This is a helper function for the function is_alt_sym from sympy.combinatorics.perm_groups.
Examples
>>> from sympy.combinatorics.util import _check_cycles_alt_sym >>> from sympy.combinatorics import Permutation >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]]) >>> _check_cycles_alt_sym(a) False >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]]) >>> _check_cycles_alt_sym(b) True
- sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]¶
Distribute the group elements
gens
by membership in basic stabilizers.- Parameters:
base : a sequence of points in \(\{0, 1, \dots, n-1\}\)
gens : a list of elements of a permutation group of degree \(n\).
- Returns:
list
List of length \(k\), where \(k\) is the length of base. The \(i\)-th entry contains those elements in gens which fix the first \(i\) elements of base (so that the \(0\)-th entry is equal to gens itself). If no element fixes the first \(i\) elements of base, the \(i\)-th element is set to a list containing the identity element.
Explanation
Notice that for a base \((b_1, b_2, \dots, b_k)\), the basic stabilizers are defined as \(G^{(i)} = G_{b_1, \dots, b_{i-1}}\) for \(i \in\{1, 2, \dots, k\}\).
Examples
>>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.util import _distribute_gens_by_base >>> D = DihedralGroup(3) >>> D.schreier_sims() >>> D.strong_gens [(0 1 2), (0 2), (1 2)] >>> D.base [0, 1] >>> _distribute_gens_by_base(D.base, D.strong_gens) [[(0 1 2), (0 2), (1 2)], [(1 2)]]
- sympy.combinatorics.util._handle_precomputed_bsgs(
- base,
- strong_gens,
- transversals=None,
- basic_orbits=None,
- strong_gens_distr=None,
Calculate BSGS-related structures from those present.
- Parameters:
base : the base
strong_gens : the strong generators
transversals : basic transversals
basic_orbits : basic orbits
strong_gens_distr : strong generators distributed by membership in basic stabilizers
- Returns:
(transversals, basic_orbits, strong_gens_distr)
where transversals are the basic transversals, basic_orbits are the basic orbits, and strong_gens_distr are the strong generators distributed by membership in basic stabilizers.
Explanation
The base and strong generating set must be provided; if any of the transversals, basic orbits or distributed strong generators are not provided, they will be calculated from the base and strong generating set.
Examples
>>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.util import _handle_precomputed_bsgs >>> D = DihedralGroup(3) >>> D.schreier_sims() >>> _handle_precomputed_bsgs(D.base, D.strong_gens, ... basic_orbits=D.basic_orbits) ([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
- sympy.combinatorics.util._orbits_transversals_from_bsgs(
- base,
- strong_gens_distr,
- transversals_only=False,
- slp=False,
Compute basic orbits and transversals from a base and strong generating set.
- Parameters:
base : The base.
strong_gens_distr : Strong generators distributed by membership in basic stabilizers.
transversals_only : bool, default: False
A flag switching between returning only the transversals and both orbits and transversals.
slp : bool, default: False
If
True
, return a list of dictionaries containing the generator presentations of the elements of the transversals, i.e. the list of indices of generators fromstrong_gens_distr[i]
such that their product is the relevant transversal element.
Explanation
The generators are provided as distributed across the basic stabilizers. If the optional argument
transversals_only
is set to True, only the transversals are returned.Examples
>>> from sympy.combinatorics import SymmetricGroup >>> from sympy.combinatorics.util import _distribute_gens_by_base >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> (S.base, strong_gens_distr) ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])
- sympy.combinatorics.util._remove_gens(
- base,
- strong_gens,
- basic_orbits=None,
- strong_gens_distr=None,
Remove redundant generators from a strong generating set.
- Parameters:
base : a base
strong_gens : a strong generating set relative to base
basic_orbits : basic orbits
strong_gens_distr : strong generators distributed by membership in basic stabilizers
- Returns:
A strong generating set with respect to
base
which is a subset ofstrong_gens
.
Examples
>>> from sympy.combinatorics import SymmetricGroup >>> from sympy.combinatorics.util import _remove_gens >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(15) >>> base, strong_gens = S.schreier_sims_incremental() >>> new_gens = _remove_gens(base, strong_gens) >>> len(new_gens) 14 >>> _verify_bsgs(S, base, new_gens) True
Notes
This procedure is outlined in [1],p.95.
References
[R96]Holt, D., Eick, B., O’Brien, E. “Handbook of computational group theory”
- sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]¶
Attempt to decompose a permutation using a (possibly partial) BSGS structure.
- Parameters:
g : permutation to be decomposed
base : sequence of points
orbits : list
A list in which the
i
-th entry is an orbit ofbase[i]
under some subgroup of the pointwise stabilizer of ` \(base[0], base[1], ..., base[i - 1]`\). The groups themselves are implicit in this function since the only information we need is encoded in the orbits and transversalstransversals : list
A list of orbit transversals associated with the orbits orbits.
Explanation
This is done by treating the sequence
base
as an actual base, and the orbitsorbits
and transversalstransversals
as basic orbits and transversals relative to it.This process is called “sifting”. A sift is unsuccessful when a certain orbit element is not found or when after the sift the decomposition does not end with the identity element.
The argument
transversals
is a list of dictionaries that provides transversal elements for the orbitsorbits
.Examples
>>> from sympy.combinatorics import Permutation, SymmetricGroup >>> from sympy.combinatorics.util import _strip >>> S = SymmetricGroup(5) >>> S.schreier_sims() >>> g = Permutation([0, 2, 3, 1, 4]) >>> _strip(g, S.base, S.basic_orbits, S.basic_transversals) ((4), 5)
Notes
The algorithm is described in [1],pp.89-90. The reason for returning both the current state of the element being decomposed and the level at which the sifting ends is that they provide important information for the randomized version of the Schreier-Sims algorithm.
See also
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
,sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random
References
[R97]Holt, D., Eick, B., O’Brien, E.”Handbook of computational group theory”
- sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]¶
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic stabilizers.
- Parameters:
strong_gens_distr : strong generators distributed by membership in basic stabilizers
Examples
>>> from sympy.combinatorics import SymmetricGroup >>> from sympy.combinatorics.util import (_strong_gens_from_distr, ... _distribute_gens_by_base) >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> S.strong_gens [(0 1 2), (2)(0 1), (1 2)] >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> _strong_gens_from_distr(strong_gens_distr) [(0 1 2), (2)(0 1), (1 2)]
See also